当前位置: X-MOL 学术ChemSusChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sufficient Utilization of Zirconium Ions to Improve the Structure and Surface properties of Nickel‐Rich Cathode Materials for Lithium‐Ion Batteries
ChemSusChem ( IF 8.4 ) Pub Date : 2018-04-14 , DOI: 10.1002/cssc.201702451
Tao He 1 , Yun Lu 1 , Yuefeng Su 1, 2 , Liying Bao 1 , Jing Tan 3 , Lai Chen 1 , Qiyu Zhang 1 , Weikang Li 1 , Shi Chen 1, 2 , Feng Wu 1, 2
Affiliation  

We doped Zr4+ ions in the outer layer of Ni0.8Co0.1Mn0.1(OH)2 by coprecipitation. The distribution of Zr4+ in the final cathode materials showed a gradient distribution because of ion migration during the thermal treatment. The doped layer was confirmed by using various analysis methods (energy‐dispersive X‐ray spectroscopy, XRD, X‐ray photoelectron spectroscopy, and TEM), which implies that Zr4+ can not only occupy both the transition metal slabs and Li slabs but also form a Li2ZrO3 layer on the surface as a highly ion‐conductive layer. The doped Zr4+ in the transition metal slabs can stabilize the crystal structure because of the strong Zr−O bond energy, and the doped Zr4+ in the Li slabs can act as pillar ions to improve the structural stability and reduce cation mixing. The gradient doping can take advantage of the “pillar effect” and restrain the “blocking effect” of the pillar ions, which reduces irreversible capacity loss and improves the cycling and rate performance of the Ni‐rich cathode materials. The capacity retention of the modified sample reached 83.2 % after 200 cycles at 1C (200 mA g−1) at 2.8–4.5 V, and the discharge capacity was up to 164.7 mAh g−1 at 10C. This effective strategy can improve the structure stability of the cathode material while reducing the amount of non‐electrochemical active dopant because of the gradient distribution of the dopant. In addition, the highly ion‐conductive layer of Li2ZrO3 on the surface can improve the rate performance of the cathode.

中文翻译:

充分利用锆离子来改善锂离子电池用富镍阴极材料的结构和表面性能

我们通过共沉淀在Ni 0.8 Co 0.1 Mn 0.1(OH)2的外层中掺杂了Zr 4+离子。最终阴极材料中Zr 4+的分布由于热处理过程中的离子迁移而显示出梯度分布。通过使用各种分析方法(能量色散X射线光谱,XRD,X射线光电子能谱和TEM)确定了掺杂层,这表明Zr 4+不仅可以占据过渡金属板和锂板,而且可以同时占据过渡金属板和锂板。还可以在表面上形成一层Li 2 ZrO 3层,作为高离子导电层。掺杂的Zr 4+过渡金属板中的Zr-O键能很强,可以稳定晶体结构,Li板中掺杂的Zr 4+可以作为柱离子,从而提高结构稳定性并减少阳离子混合。梯度掺杂可以利用“柱状效应”并抑制柱状离子的“阻挡效应”,从而减少了不可逆的电容损失,并改善了富镍正极材料的循环性能和倍率性能。改性样品的容量保持率在2.8–4.5 V的1C(200 mA g -1)下200个循环后达到83.2%,放电容量高达164.7 mAh g -1在10C。这种有效的策略可以提高阴极材料的结构稳定性,同时由于掺杂剂的梯度分布而减少了非电化学活性掺杂剂的数量。此外,表面上的Li 2 ZrO 3的高离子导电层可以改善阴极的倍率性能。
更新日期:2018-04-14
down
wechat
bug