当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strategic Advances in Formation of Cell‐in‐Shell Structures: From Syntheses to Applications
Advanced Materials ( IF 29.4 ) Pub Date : 2018-02-14 , DOI: 10.1002/adma.201706063
Beom Jin Kim 1 , Hyeoncheol Cho 1 , Ji Hun Park 1 , João F. Mano 2 , Insung S. Choi 1
Affiliation  

Single‐cell nanoencapsulation, forming cell‐in‐shell structures, provides chemical tools for endowing living cells, in a programmed fashion, with exogenous properties that are neither innate nor naturally achievable, such as cascade organic‐catalysis, UV filtration, immunogenic shielding, and enhanced tolerance in vitro against lethal factors in real‐life settings. Recent advances in the field make it possible to further fine‐tune the physicochemical properties of the artificial shells encasing individual living cells, including on‐demand degradability and reconfigurability. Many different materials, other than polyelectrolytes, have been utilized as a cell‐coating material with proper choice of synthetic strategies to broaden the potential applications of cell‐in‐shell structures to whole‐cell catalysis and sensors, cell therapy, tissue engineering, probiotics packaging, and others. In addition to the conventional “one‐time‐only” chemical formation of cytoprotective, durable shells, an approach of autonomous, dynamic shellation has also recently been attempted to mimic the naturally occurring sporulation process and to make the artificial shell actively responsive and dynamic. Here, the recent development of synthetic strategies for formation of cell‐in‐shell structures along with the advanced shell properties acquired is reviewed. Demonstrated applications, such as whole‐cell biocatalysis and cell therapy, are discussed, followed by perspectives on the field of single‐cell nanoencapsulation.

中文翻译:

细胞壳结构形成的战略进展:从合成到应用

单细胞纳米囊化技术形成了壳状细胞结构,以编程方式提供了赋予活细胞化学性的工具,它们具有先天或自然无法实现的外源特性,例如级联有机催化,紫外线过滤,免疫原性屏蔽,并提高了在现实环境中对致命因素的体外耐受性。该领域的最新进展使得可以进一步微调包裹单个活细胞的人造壳的理化特性,包括按需降解性和可重构性。许多不同的材料,比其他的聚电解质,已被用作与合成策略的适当选择的细胞涂布材料以扩大细胞壳式结构,以全细胞催化和传感器,细胞疗法的潜在应用,组织工程,益生菌包装等。除了常规的“一次性”化学形成的具有细胞保护作用的耐用壳外,最近还尝试了一种自主的动态脱壳方法,以模仿自然发生的孢子形成过程,并使人造壳具有主动响应性和动态性。在此,对形成壳内结构的合成策略的最新进展以及获得的先进壳性能进行了综述。讨论了已展示的应用,例如全细胞生物催化和细胞疗法,然后是单细胞纳米囊包领域的观点。最近还尝试了动态脱壳,以模仿自然发生的孢子形成过程,并使人造壳主动响应和动态化。在此,对形成壳内结构的合成策略的最新进展以及获得的先进壳性能进行了综述。讨论了已展示的应用,例如全细胞生物催化和细胞疗法,然后是单细胞纳米囊包领域的观点。最近还尝试了动态脱壳,以模仿自然发生的孢子形成过程,并使人造壳主动响应和动态化。在此,对形成壳内结构的合成策略的最新进展以及获得的先进壳性能进行了综述。讨论了已展示的应用,例如全细胞生物催化和细胞疗法,然后是单细胞纳米囊包领域的观点。
更新日期:2018-02-14
down
wechat
bug