当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rational Design of Multifunctional Fe@γ‐Fe2O3@H‐TiO2 Nanocomposites with Enhanced Magnetic and Photoconversion Effects for Wide Applications: From Photocatalysis to Imaging‐Guided Photothermal Cancer Therapy
Advanced Materials ( IF 29.4 ) Pub Date : 2018-02-14 , DOI: 10.1002/adma.201706747
Meifang Wang 1, 2 , Kerong Deng 1 , Wei Lü 1, 3 , Xiaoran Deng 1 , Kai Li 1 , Yanshu Shi 1, 2 , Binbin Ding 1, 2 , Ziyong Cheng 1 , Bengang Xing 4 , Gang Han 5 , Zhiyao Hou 1 , Jun Lin 1
Affiliation  

Titanium dioxide (TiO2) has been widely investigated and used in many areas due to its high refractive index and ultraviolet light absorption, but the lack of absorption in the visible–near infrared (Vis–NIR) region limits its application. Herein, multifunctional Fe@γ‐Fe2O3@H‐TiO2 nanocomposites (NCs) with multilayer‐structure are synthesized by one‐step hydrogen reduction, which show remarkably improved magnetic and photoconversion effects as a promising generalists for photocatalysis, bioimaging, and photothermal therapy (PTT). Hydrogenation is used to turn white TiO2 in to hydrogenated TiO2 (H‐TiO2), thus improving the absorption in the Vis–NIR region. Based on the excellent solar‐driven photocatalytic activities of the H‐TiO2 shell, the Fe@γ‐Fe2O3 magnetic core is introduced to make it convenient for separating and recovering the catalytic agents. More importantly, Fe@γ‐Fe2O3@H‐TiO2 NCs show enhanced photothermal conversion efficiency due to more circuit loops for electron transitions between H‐TiO2 and γ‐Fe2O3, and the electronic structures of Fe@γ‐Fe2O3@H‐TiO2 NCs are calculated using the Vienna ab initio simulation package based on the density functional theory to account for the results. The reported core–shell NCs can serve as an NIR‐responsive photothermal agent for magnetic‐targeted photothermal therapy and as a multimodal imaging probe for cancer including infrared photothermal imaging, magnetic resonance imaging, and photoacoustic imaging.

中文翻译:

具有增强的磁性和光转换作用的多功能Fe @γ-Fe2O3@ H-TiO2纳米复合材料的合理设计:从光催化到成像指导的光热癌症治疗

二氧化钛(TiO 2)由于其高折射率和紫外线吸收而被广泛研究并用于许多领域,但是在可见光-近红外(Vis-NIR)区域缺乏吸收限制了它的应用。在此,通过一步式氢还原合成具有多层结构的多功能Fe @ γ‐Fe 2 O 3 @ H‐TiO 2纳米复合材料(NCs),作为光催化,生物成像,光电子学,光电子学,光电子学,光电子学,光电子学,光电子学,光电子学,光电子学,光电子学,光电子学,光电子学,光电子学,光电子学,光电子学,光电子学,光电子学,光电子学,光电子学,光电子学,光电子学,光电子学等领域有广泛前景的普通技术人员,均显示出显着改善的磁性和光转换效果。和光热疗法(PTT)。氢化用于将白色TiO 2转变为氢化TiO 2(H‐TiO 2),从而提高了Vis–NIR区域的吸收率。基于所述H-TiO 2的优异的太阳能驱动的光催化活性2壳的Fe @了γ-Fe 2 ö 3磁芯被引入,使之便于分离和回收催化剂。更重要的是,Fe @ γ‐Fe 2 O 3 @ H‐TiO 2 NC显示出更高的光热转换效率,这是由于H‐TiO 2和γ‐Fe 2 O 3之间的电子跃迁的电路回路增多以及Fe @了γ-Fe 2 ö 3 @ H-的TiO 2使用基于密度泛函理论的Vienna从头算模拟软件包来计算NC,以说明结果。报道的核壳型NC可作为NIR响应光热剂,用于磁靶向光热疗法,并可作为癌症的多峰成像探针,包括红外光热成像,磁共振成像和光声成像。
更新日期:2018-02-14
down
wechat
bug