当前位置: X-MOL 学术Nat. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A histone deacetylase 3-dependent pathway delimits peripheral myelin growth and functional regeneration.
Nature Medicine ( IF 82.9 ) Pub Date : 2018-02-12 , DOI: 10.1038/nm.4483
Xuelian He 1 , Liguo Zhang 1 , Luis F Queme 1, 2 , Xuezhao Liu 1 , Andrew Lu 1 , Ronald R Waclaw 1 , Xinran Dong 3 , Wenhao Zhou 3 , Grahame Kidd 4 , Sung-Ok Yoon 5 , Andres Buonanno 6 , Joshua B Rubin 7 , Mei Xin 1 , Klaus-Armin Nave 8 , Bruce D Trapp 4 , Michael P Jankowski 1, 2 , Q Richard Lu 1, 3
Affiliation  

Deficits in Schwann cell-mediated remyelination impair functional restoration after nerve damage, contributing to peripheral neuropathies. The mechanisms mediating block of remyelination remain elusive. Here, through small-molecule screening focusing on epigenetic modulators, we identified histone deacetylase 3 (HDAC3; a histone-modifying enzyme) as a potent inhibitor of peripheral myelinogenesis. Inhibition of HDAC3 enhanced myelin growth and regeneration and improved functional recovery after peripheral nerve injury in mice. HDAC3 antagonizes the myelinogenic neuregulin-PI3K-AKT signaling axis. Moreover, genome-wide profiling analyses revealed that HDAC3 represses promyelinating programs through epigenetic silencing while coordinating with p300 histone acetyltransferase to activate myelination-inhibitory programs that include the HIPPO signaling effector TEAD4 to inhibit myelin growth. Schwann cell-specific deletion of either Hdac3 or Tead4 in mice resulted in an elevation of myelin thickness in sciatic nerves. Thus, our findings identify the HDAC3-TEAD4 network as a dual-function switch of cell-intrinsic inhibitory machinery that counters myelinogenic signals and maintains peripheral myelin homeostasis, highlighting the therapeutic potential of transient HDAC3 inhibition for improving peripheral myelin repair.

中文翻译:

组蛋白脱乙酰酶 3 依赖性通路限制外周髓鞘生长和功能再生。

雪旺细胞介导的髓鞘再生缺陷会损害神经损伤后的功能恢复,从而导致周围神经病变。调节髓鞘再生阻滞的机制仍然难以捉摸。在这里,通过针对表观遗传调节剂的小分子筛选,我们将组蛋白脱乙酰酶 3(HDAC3;一种组蛋白修饰酶)鉴定为外周髓鞘生成的有效抑制剂。抑制 HDAC3 可增强髓鞘的生长和再生,并改善小鼠周围神经损伤后的功能恢复。HDAC3 拮抗髓鞘生成神经调节蛋白-PI3K-AKT 信号轴。而且,全基因组分析显示,HDAC3 通过表观遗传沉默抑制髓鞘形成前程,同时与 p300 组蛋白乙酰转移酶协调激活髓鞘形成抑制程序,包括 HIPPO 信号效应子 TEAD4 以抑制髓鞘生长。小鼠中 Hdac3 或 Tead4 雪旺细胞特异性缺失导致坐骨神经髓鞘厚度增加。因此,我们的研究结果将 HDAC3-TEAD4 网络确定为细胞内在抑制机制的双重功能开关,可对抗髓鞘生成信号并维持外周髓鞘稳态,突出了瞬时 HDAC3 抑制改善外周髓鞘修复的治疗潜力。小鼠中 Hdac3 或 Tead4 雪旺细胞特异性缺失导致坐骨神经髓鞘厚度增加。因此,我们的研究结果将 HDAC3-TEAD4 网络确定为细胞内在抑制机制的双重功能开关,可对抗髓鞘生成信号并维持外周髓鞘稳态,突出了瞬时 HDAC3 抑制改善外周髓鞘修复的治疗潜力。小鼠中 Hdac3 或 Tead4 雪旺细胞特异性缺失导致坐骨神经髓鞘厚度增加。因此,我们的研究结果将 HDAC3-TEAD4 网络确定为细胞内在抑制机制的双重功能开关,可对抗髓鞘生成信号并维持外周髓鞘稳态,突出了瞬时 HDAC3 抑制改善外周髓鞘修复的治疗潜力。
更新日期:2018-02-13
down
wechat
bug