当前位置: X-MOL 学术Ultrason. Sonochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of an electrochemical process for production of nano-copper oxides: Agglomeration kinetics modeling
Ultrasonics Sonochemistry ( IF 8.4 ) Pub Date : 2018-02-12 , DOI: 10.1016/j.ultsonch.2018.02.024
Seyed Hadi Shahcheraghi , Mahin Schaffie , Mohammad Ranjbar

The main objective of this study was the development of a simple, clean, and industrial applicable electrochemical process for production of high pure nano-copper oxides from mining and industrial resources (e.g., ore, spent, slag and wastewater). To conduct the proposed process, a special set up containing an electrochemical cell in an ultrasonic system (28 kHz and 160 W) was proposed. Accordingly, using this set up and applying appropriate voltage (≈ 5 V) at 25°C, in the presence of N2 gas, the simultaneous anode dissolution and nano-copper oxides formation (≈ 24 nm) can be occurred, rapidly (less than 45 minutes). Then, the effect of N2 gas and free radicals generated by ultrasonic irradiation was studied. The results showed, in the absence of ultrasonic irradiation and N2, an increase of electrolyte pH from 6.42 to 10.92, a decrease of electrolyte Eh from 285 mV to –1.14 V, and formation of copper nanoparticles. While, in the presence of ultrasonic and N2, the CuO nanoparticles were formed due to presence of H2O2 generated by interaction of free radicals. Moreover, a novel method for kinetics modeling of nanoparticles agglomeration was proposed according to distributed activation energy model and Arrhenius parameters variation. The results showed that, in the absence of ultrasonic irradiation, the nanoparticle agglomerates were firstly formed (interface controlled mechanism) and then, the diffusion of nanoparticle agglomerates was occurred (diffusion controlled mechanism). Therefore, the control of nanoparticles size and shape may be impossible without surfactant. Also, in the presence of ultrasonic irradiation, the whole of agglomeration process followed interface controlled mechanism. Therefore, using ultrasonic irradiation, the nanoparticles shape and size don’t change due to prevention of agglomerates diffusion.



中文翻译:

制备纳米铜氧化物的电化学方法的发展:团聚动力学模型

这项研究的主要目的是开发一种简单,清洁和工业适用的电化学方法,以从采矿和工业资源(例如矿石,废金属,矿渣和废水)生产高纯纳米铜氧化物。为了进行建议的过程,提出了在超声系统(28 kHz和160 W)中包含电化学电池的特殊装置。因此,使用这种设置并在25°C下施加适当的电压(≈5 V),在存在N 2气体的情况下,可以同时发生阳极溶解和纳米铜氧化物的形成(≈24 nm),而且速度很快(较少)。超过45分钟)。然后,研究了N 2气体和超声辐射产生的自由基的影响。结果表明,在没有超声波辐射和氮的情况下如图2所示,电解质pH从6.42升高到10.92,电解质Eh从285 mV降低到–1.14 V,并形成了铜纳米颗粒。而在超声和N 2的存在下,由于H 2 O 2的存在,形成了CuO纳米颗粒。由自由基相互作用产生。此外,根据分布的活化能模型和Arrhenius参数的变化,提出了一种新的纳米粒子团聚动力学建模方法。结果表明,在没有超声辐射的情况下,首先形成纳米颗粒附聚物(界面控制机制),然后发生纳米颗粒附聚物的扩散(扩散控制机制)。因此,如果没有表面活性剂,可能无法控制纳米颗粒的大小和形状。另外,在超声辐射的存在下,整个附聚过程遵循界面控制机制。因此,使用超声波照射,由于防止了团聚体的扩散,纳米粒子的形状和尺寸不会改变。

更新日期:2018-02-13
down
wechat
bug