当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The disclosure of mesoscale behaviour of a 3d-SMM monolayer on Au(111) through a multilevel approach†
Nanoscale ( IF 6.7 ) Pub Date : 2018-02-12 00:00:00 , DOI: 10.1039/c7nr06320b
Guglielmo Fernandez Garcia 1, 2, 3, 4, 5 , Alessandro Lunghi 1, 2, 3, 6, 7 , Federico Totti 1, 2, 3 , Roberta Sessoli 1, 2, 3
Affiliation  

Here we present a computational study of a full- and a half-monolayer of a Fe4 single molecule magnet ([Fe4(L)2(dpm)6], where H3L = 2-hydroxymethyl-2-phenylpropane-1,3-diol and Hdpm = dipivaloylmethane, Fe4Ph) on an unreconstructed surface of Au(111). This has been possible through the application of an integrated approach, which allows the explicit inclusion of the packing effects in the classical dynamics to be used in a second step in periodic and non-periodic high level DFT calculations. In this way we can obtain access to mesoscale geometrical data and verify how they can influence the magnetic properties of interest of the single Fe4 molecule. The proposed approach allows to overcome the ab initio state-of-the-art approaches used to study Single Molecule Magnets (SMMs), which are based on the study of one single adsorbed molecule and cannot represent effects on the scale of a monolayer. Indeed, we show here that it is possible to go beyond the computational limitations inherent to the use, for such complex systems, of accurate calculation techniques (e.g. ab initio molecular dynamics) without losing the level of accuracy necessary to gain new detailed insights, hardly reachable at the experimental level. Indeed, long-range and edge effects on the Fe4 structures and their easy axis of magnetization orientations have been evidenced as their different contributions to the overall macroscopic behavior.

中文翻译:

通过多级方法披露了Au(111)上3d-SMM单层的中尺度行为

在这里,我们对Fe 4单分子磁体([Fe 4(L)2(dpm)6 ],其中H 3 L = 2-羟甲基-2-苯基丙烷-1 ,3-二醇和Hdpm =二甲戊酰甲烷,Fe 4 Ph)在未重建的Au(111)表面上。这可以通过应用集成方法来实现,该方法允许在经典动力学中明确包含压缩效果,以便在周期性和非周期性高级DFT计算的第二步中使用。通过这种方式,我们可以获得中尺度几何数据,并验证它们如何影响单个Fe 4的感兴趣的磁性能。分子。所提出的方法可以克服用于研究单分子磁体(SMM)的从头开始的最新技术,该方法基于对单个吸附分子的研究,不能代表对单分子层规模的影响。确实,我们在这里表明,对于这样的复杂系统,使用精确计算技术(例如从头算分子动力学)所使用的固有局限性是可能的,而不会失去获得新的详细见解所需的准确性水平,几乎没有在实验水平上是可以达到的。实际上,对Fe 4的远距离和边缘效应 结构及其易磁化方向的轴已被证明是它们对整体宏观行为的不同贡献。
更新日期:2018-02-12
down
wechat
bug