当前位置: X-MOL 学术Nano-Micro Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of Supercapacitor Electrodes Using Molecular Dynamics Simulations
Nano-Micro Letters ( IF 26.6 ) Pub Date : 2018-01-15 , DOI: 10.1007/s40820-018-0188-2
Zheng Bo , Changwen Li , Huachao Yang , Kostya Ostrikov , Jianhua Yan , Kefa Cen

Electric double-layer capacitors (EDLCs) are advanced electrochemical devices for energy storage and have attracted strong interest due to their outstanding properties. Rational optimization of electrode–electrolyte interactions is of vital importance to enhance device performance for practical applications. Molecular dynamics (MD) simulations could provide theoretical guidelines for the optimal design of electrodes and the improvement of capacitive performances, e.g., energy density and power density. Here we discuss recent MD simulation studies on energy storage performance of electrode materials containing porous to nanostructures. The energy storage properties are related to the electrode structures, including electrode geometry and electrode modifications. Altering electrode geometry, i.e., pore size and surface topography, can influence EDL capacitance. We critically examine different types of electrode modifications, such as altering the arrangement of carbon atoms, doping heteroatoms and defects, which can change the quantum capacitance. The enhancement of power density can be achieved by the intensified ion dynamics and shortened ion pathway. Rational control of the electrode morphology helps improve the ion dynamics by decreasing the ion diffusion pathway. Tuning the surface properties (e.g., the affinity between the electrode and the ions) can affect the ion-packing phenomena. Our critical analysis helps enhance the energy and power densities of EDLCs by modulating the corresponding electrode structures and surface properties.
Open image in new window


中文翻译:

基于分子动力学模拟的超级电容器电极设计

双电层电容器(EDLC)是用于能量存储的高级电化学设备,由于其出色的性能而引起了人们的极大兴趣。合理优化电极与电解质的相互作用对于提高实际应用中的器件性能至关重要。分子动力学(MD)模拟可以为电极的最佳设计和电容性能(例如能量密度和功率密度)的改善提供理论指导。在这里,我们讨论了最近的MD模拟研究,该研究对包含多孔纳米结构的电极材料的储能性能进行了研究。能量存储特性与电极结构有关,包括电极几何形状和电极修改。改变电极的几何形状,即孔径和表面形貌,会影响EDL电容。我们严格地研究了不同类型的电极修饰,例如改变碳原子的排列,掺杂杂原子和缺陷,这些都会改变量子电容。可以通过增强离子动力学和缩短离子路径来实现功率密度的提高。合理控制电极形态有助于减少离子扩散途径,从而改善离子动力学。调整表面特性(例如,电极和离子之间的亲和力)会影响离子堆积现象。我们的关键分析通过调节相应的电极结构和表面特性,有助于提高EDLC的能量和功率密度。掺杂杂原子和缺陷,会改变量子电容。可以通过增强离子动力学和缩短离子路径来实现功率密度的提高。合理控制电极形态有助于减少离子扩散途径,从而改善离子动力学。调整表面特性(例如,电极和离子之间的亲和力)会影响离子堆积现象。我们的关键分析通过调节相应的电极结构和表面特性,有助于提高EDLC的能量和功率密度。掺杂杂原子和缺陷,会改变量子电容。可以通过增强离子动力学和缩短离子路径来实现功率密度的提高。合理控制电极形态有助于减少离子扩散途径,从而改善离子动力学。调整表面特性(例如,电极和离子之间的亲和力)会影响离子堆积现象。我们的关键分析通过调节相应的电极结构和表面特性,有助于提高EDLC的能量和功率密度。合理控制电极形态有助于减少离子扩散途径,从而改善离子动力学。调整表面特性(例如,电极和离子之间的亲和力)会影响离子堆积现象。我们的关键分析通过调节相应的电极结构和表面特性,有助于提高EDLC的能量和功率密度。合理控制电极形态有助于减少离子扩散途径,从而改善离子动力学。调整表面特性(例如,电极和离子之间的亲和力)会影响离子堆积现象。我们的关键分析通过调节相应的电极结构和表面特性,有助于提高EDLC的能量和功率密度。
在新窗口中打开图像
更新日期:2018-01-15
down
wechat
bug