当前位置: X-MOL 学术ACS Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hollow Pt-Functionalized SnO2 Hemipill Network Formation Using a Bacterial Skeleton for the Noninvasive Diagnosis of Diabetes
ACS Sensors ( IF 8.9 ) Pub Date : 2018-02-07 00:00:00 , DOI: 10.1021/acssensors.7b00955
Hi Gyu Moon , Youngmo Jung , Dukwoo Jun , Ji Hyun Park 1 , Young Wook Chang 2 , Hyung-Ho Park 2 , Chong-Yun Kang , Chulki Kim , Richard B. Kaner
Affiliation  

Hollow-structured nanomaterials are presented as an outstanding sensing platform because of their unique combination of high porosity in both the micro- and nanoscale, their biocompatibility, and flexible template applicability. Herein, we introduce a bacterial skeleton method allowing for cost-effective fabrication with nanoscale precision. As a proof-of-concept, we fabricated a hollow SnO2 hemipill network (HSHN) and a hollow Pt-functionalized SnO2 hemipill network (HPN). A superior detecting capability of HPN toward acetone, a diabetes biomarker, was demonstrated at low concentration (200 ppb) under high humidity (RH 80%). The detection limit reaches 3.6 ppb, a level satisfying the minimum requirement for diabetes breath diagnosis. High selectivity of the HPN sensor against C6H6, C7H8, CO, and NO vapors is demonstrated using principal component analysis (PCA), suggesting new applications of HPN for human-activity monitoring and a personal healthcare tool for diagnosing diabetes. The skeleton method can be further employed to mimic nanostructures of biomaterials with unique functionality for broad applications.

中文翻译:

空心Pt功能化SnO 2 Hemipill网络形成的细菌骨架用于糖尿病的非侵入性诊断

中空结构的纳米材料由于其在微米和纳米级的高孔隙率,其生物相容性和灵活的模板适用性的独特组合而被认为是出色的传感平台。本文中,我们介绍了一种细菌骨架方法,可实现具有成本效益的纳米级精度制造。作为概念验证,我们制造了空心的SnO 2半胱氨酸网络(HSHN)和空心的Pt官能化的SnO 2半胱氨酸网络(HPN)。在低浓度(200 ppb)和高湿度(RH 80%)的条件下,证明HPN对糖尿病生物标志物丙酮具有出色的检测能力。检出限达到3.6 ppb,满足糖尿病呼吸诊断的最低要求。HPN传感器对C的高选择性使用主成分分析(PCA)演示了6 H 6,C 7 H 8,CO和NO蒸气,这表明HPN在人类活动监测和诊断糖尿病的个人保健工具方面的新应用。骨架方法可以进一步用于模拟具有独特功能的生物材料的纳米结构,具有广泛的应用前景。
更新日期:2018-02-07
down
wechat
bug