当前位置: X-MOL 学术J. Cryst. Growth › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Defect analysis of the LED structure deposited on the sapphire substrate
Journal of Crystal Growth ( IF 1.8 ) Pub Date : 2018-04-01 , DOI: 10.1016/j.jcrysgro.2018.02.011
Qichu Nie , Zhimin Jiang , Zhiyin Gan , Sheng Liu , Han Yan , Haisheng Fang

Abstract Transmission electron microscope (TEM) and double-crystal X-ray diffraction (DCXRD) measurements have been performed to investigate dislocations of the whole structure of the LED layers deposited on both the conventional (unpatterned sapphire substrate, UPSS) and patterned sapphire substrates (PSS). TEM results show that there exists a dislocation-accumulated region near the substrate/GaN interface, where the dislocation density is much higher with the UPPS than that with the PSS. It indicates that the pattern on the substrate surface is able to block the formation and propagation of dislocations. Further analysis discloses that slope of the pattern is found to suppress the deposition of GaN, and thus to provide more spaces for the epitaxially lateral overgrowth (ELO) of high temperature GaN, which significantly reduces the number of the initial islands, and minimizes dislocation formation due to the island coalescence. V-defect incorporating the threading dislocation is detected in the InGaN/GaN multi-quantum wells (MQWs), and its propagation mechanism is determined as the decrease of the surface energy due to the incorporation of indium. In addition, temperature dependence of dislocation formation is further investigated. The results show that dislocation with the screw component decreases monotonously as temperature goes up. However, edge dislocation firstly drops, and then increases by temperature due to the enhanced thermal mismatch stress. It implies that an optimized range of the growth temperature can be obtained to improve quality of the LED layers.

中文翻译:

蓝宝石衬底上沉积LED结构的缺陷分析

摘要 透射电子显微镜 (TEM) 和双晶 X 射线衍射 (DCXRD) 测量已用于研究沉积在常规(未图案化蓝宝石基板,UPSS)和图案化蓝宝石基板上的 LED 层的整个结构的位错( PSS)。TEM 结果表明,在衬底/GaN 界面附近存在位错积累区,UPPS 的位错密度远高于 PSS。这表明衬底表面上的图案能够阻止位错的形成和传播。进一步分析表明,发现图案的斜率抑制了 GaN 的沉积,从而为高温 GaN 的外延横向过度生长 (ELO) 提供了更多空间,这显着减少了初始岛的数量,并最大限度地减少了由于岛合并引起的位错形成。在 InGaN/GaN 多量子阱 (MQW) 中检测到包含螺纹位错的 V 缺陷,其传播机制被确定为由于掺入铟导致的表面能降低。此外,进一步研究了位错形成的温度依赖性。结果表明,随着温度的升高,螺杆组分的位错单调减少。然而,由于热失配应力的增强,边缘位错首先下降,然后随着温度的升高而增加。这意味着可以获得优化的生长温度范围以提高 LED 层的质量。并最大限度地减少由于岛聚结引起的位错形成。在 InGaN/GaN 多量子阱 (MQW) 中检测到包含螺纹位错的 V 缺陷,其传播机制被确定为由于掺入铟导致的表面能降低。此外,进一步研究了位错形成的温度依赖性。结果表明,随着温度的升高,螺杆组分的位错单调减少。然而,由于热失配应力的增强,边缘位错首先下降,然后随着温度的升高而增加。这意味着可以获得优化的生长温度范围以提高 LED 层的质量。并最大限度地减少由于岛聚结引起的位错形成。在 InGaN/GaN 多量子阱 (MQW) 中检测到包含螺纹位错的 V 缺陷,其传播机制被确定为由于掺入铟导致的表面能降低。此外,进一步研究了位错形成的温度依赖性。结果表明,随着温度的升高,螺杆组分的位错单调减少。然而,由于热失配应力的增强,边缘位错首先下降,然后随着温度的升高而增加。这意味着可以获得优化的生长温度范围以提高 LED 层的质量。其传播机制被确定为由于掺入铟导致表面能的降低。此外,进一步研究了位错形成的温度依赖性。结果表明,随着温度的升高,螺杆组分的位错单调减少。然而,由于热失配应力的增强,边缘位错首先下降,然后随着温度的升高而增加。这意味着可以获得优化的生长温度范围以提高 LED 层的质量。其传播机制被确定为由于掺入铟导致表面能的降低。此外,进一步研究了位错形成的温度依赖性。结果表明,随着温度的升高,螺杆组分的位错单调减少。然而,由于热失配应力的增强,边缘位错首先下降,然后随着温度的升高而增加。这意味着可以获得优化的生长温度范围以提高 LED 层的质量。由于热失配应力的增强,边缘位错首先下降,然后随着温度的升高而增加。这意味着可以获得优化的生长温度范围以提高 LED 层的质量。由于热失配应力的增强,边缘位错首先下降,然后随着温度的升高而增加。这意味着可以获得优化的生长温度范围以提高 LED 层的质量。
更新日期:2018-04-01
down
wechat
bug