当前位置: X-MOL 学术Ind. Eng. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Kinetics of Steam Gasification of Glucose as a Biomass Surrogate over Ni/Ce–Mesoporous Al2O3 in a Fluidized Bed Reactor
Industrial & Engineering Chemistry Research ( IF 4.2 ) Pub Date : 2018-02-20 00:00:00 , DOI: 10.1021/acs.iecr.7b04437
Sagir Adamu 1 , Mohammad M. Hossain 1
Affiliation  

This study reports the kinetics of steam gasification of glucose as a biomass surrogate over a new Ni(x)/Ce-doped Al2O3 (x = 5, 10, 15, and 20 wt %) catalyst in a fluidized bed reactor. The presence of ceria plus successive nickel impregnation helped in conserving the catalyst’s high surface area (i.e., 102 m2/g at 20 wt % nickel loading). Incorporation of ceria dopant suppressed coke formation during steam gasification of 15 wt % glucose in the fluidized bed reactor at 650 °C and 1 atm in the order Ni(20) < Ni(15) < Ni(10) < Ni(5)/Ce-doped Al2O3. The detailed kinetic model comprises reactant adsorption, surface reaction, and product desorption steps, involving the water gas shift reaction (WGS), steam reforming of methane (SRM), and reverse dry reforming of methane (RDRM). Ni(20)/Ce-doped Al2O3 with the best performance in terms of syngas production, and the least tendency for coking, was used for the kinetic studies (for T = 550–700 °C and t = 5–25 s). The results of the model simulation indicate that the rate of water gas shift was the highest (7.76 × 10–2 mmol/g of cat.·s·bar2) followed by steam reforming of methane (4.13 × 10–2 mmol/g of cat.·s·bar2) and then reverse dry reforming of methane (3.57 × 10–2 mmol/g of cat.·s·bar2). The high reaction rates signify the suitability of the new Ni(x)/Ce–mesoporous Al2O3 catalytic system applied in this work. The modeling procedure could be applied conveniently for a different catalytic system in a similar reactor to obtain the necessary kinetic parameters.

中文翻译:

Ni / Ce-介孔Al 2 O 3在流化床反应器中作为生物质替代物的葡萄糖蒸汽气化动力学

这项研究报告了流化床反应器中新型的Ni(x)/ Ce掺杂Al 2 O 3x = 5、10、15和20 wt%)催化剂上作为生物质替代物的葡萄糖蒸汽气化动力学。二氧化铈的存在和连续的镍浸渍有助于节省催化剂的高表面积(即在镍含量为20 wt%时为102 m 2 / g)。掺入二氧化铈掺杂剂可抑制蒸汽在流化床反应器中在650°C和1 atm下气化15 wt%葡萄糖时焦炭的形成,顺序为Ni(20)<Ni(15)<Ni(10)<Ni(5)/铈掺杂Al 2 O 3。详细的动力学模型包括反应物吸附,表面反应和产物解吸步骤,包括水煤气变换反应(WGS),甲烷的蒸汽重整(SRM)和甲烷的反向干重整(RDRM)。Ni(20)/ Ce掺杂的Al 2 O 3在合成气生产方面具有最佳性能,而结焦的趋势最少,用于动力学研究(T = 550–700°C,t = 5–25 s)。模型仿真结果表明,水煤气的转化率最高(cat。·s·bar 2为7.76×10 –2 mmol / g ),其次是甲烷的蒸汽重整(4.13×10 –2 mmol / g)。 cat.s·bar 2的),然后逆向进行甲烷的干重整(3.57×10 -2 mmol / g cat。·s·bar 2)。高反应速率表明适用于这项工作的新型Ni(x)/ Ce-介孔Al 2 O 3催化体系的适用性。该建模程序可方便地应用于相似反应器中的不同催化系统,以获得必要的动力学参数。
更新日期:2018-02-21
down
wechat
bug