当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Manipulation of Phonon Transport in Thermoelectrics
Advanced Materials ( IF 29.4 ) Pub Date : 2018-02-05 , DOI: 10.1002/adma.201705617
Zhiwei Chen 1 , Xinyue Zhang 1 , Yanzhong Pei 1
Affiliation  

For several decades, thermoelectric advancements have largely relied on the reduction of lattice thermal conductivity (κL). According to the Boltzmann transport theory of phonons, κL mainly depends on the specific heat, the velocity, and the scattering of phonons. Intensifying the scattering rate of phonons is the focus for reducing the lattice thermal conductivity. Effective scattering sources include 0D point defects, 1D dislocations, and 2D interfaces, each of which has a particular range of frequencies where phonon scattering is most effective. Because acoustic phonons are generally the main contributors to κL due to their much higher velocities compared to optical phonons, many low‐κL thermoelectrics rely on crystal structure complexity leading to a small fraction of acoustic phonons and/or weak chemical bonds enabling an overall low phonon propagation velocity. While these thermal strategies are successful for advancing thermoelectrics, the principles used can be integrated with approaches such as band engineering to improve the electronic properties, which can promote this energy technology from niche applications into the mainstream.

中文翻译:

热电中声子传输的操纵

几十年来,热电进步已经在很大程度上依赖于晶格热导率(κ的减少大号)。根据声子的玻尔兹曼输运理论,κ大号主要取决于比热,速度,以及声子的散射。增强声子的散射速率是降低晶格热导率的重点。有效的散射源包括0D点缺陷,1D位错和2D界面,每种界面都有特定的频率范围,其中声子散射最有效。因为声子通常的主要贡献者κ大号由于它们的高得多的速度相比的光学声子,许多低κ大号热电器件依赖于晶体结构的复杂性,从而导致一小部分的声子和/或弱的化学键,从而导致总体上较低的声子传播速度。虽然这些热策略在推进热电学方面是成功的,但可以将所使用的原理与诸如能带工程的方法集成在一起,以改善电子性能,这可以将这种能源技术从利基应用推广到主流。
更新日期:2018-02-05
down
wechat
bug