当前位置: X-MOL 学术Mol. Syst. Des. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular dynamics simulations and PRISM theory study of solutions of nanoparticles and triblock copolymers with solvophobic end blocks†
Molecular Systems Design & Engineering ( IF 3.6 ) Pub Date : 2018-01-31 00:00:00 , DOI: 10.1039/c7me00128b
Daniel J. Beltran-Villegas 1, 2, 3, 4, 5 , Ivan Lyubimov 1, 2, 3, 4, 5 , Arthi Jayaraman 1, 2, 3, 4, 5
Affiliation  

Hybrid materials composed of inorganic nanoparticles (NPs) and amphiphilic block copolymers (BCPs) combine desirable properties of NPs with the rich phase behavior of BCPs, making them attractive for use in biomaterials, responsive materials for sensing, active materials in robotics, etc. Specifically, triblock BCPs (e.g. BAB) with solvophobic end (B) blocks have been known to form micelle dispersions at low concentrations and gels at higher concentrations, making them a useful class of soft materials for a variety of applications that harness these solution structures of BAB–BCPs. In this work, we present a comprehensive study of the impact of NPs on the assembly of BAB–BCPs as a function of solvophobicity, BCP composition and NP affinity to either or both block(s) of BAB–BCP using a combination of coarse-grained molecular dynamics (MD) simulations and PRISM theory. The reason we use this dual theory-simulation approach is because PRISM theory provides structure and thermodynamic information for a given BCP–NP solution much faster than MD simulations, but PRISM theory converges to a numerical solution only for conditions where the solution is still disordered. So, we use PRISM theory to screen BAB–BCP solutions at low solvophobicity where the solution is still disordered, and identify signatures of gel formation and micro- and macro-phase separation depending on BCP composition, concentration, and NP affinity. Then using MD simulations, with increasing solvophobicity as the system orders, we quantify and visualize the shape and size of assembled cores in the ordered morphology, the conformations adopted by the A blocks and B blocks with and without NPs, the amount of NP uptake and the spatial arrangement of the NPs in the assembled structure. This paper demonstrates how one could optimally use both PRISM theory and MD simulations in a synergistic manner to screen a large materials design space for polymers and nanoparticle systems.

中文翻译:

带有疏溶剂端嵌段的纳米颗粒和三嵌段共聚物溶液的分子动力学模拟和PRISM理论研究

无机纳米颗粒(NP)和两亲性嵌段共聚物(口岸)构成的混合材料相结合NP的期望的性质与过境点的富相行为,使得它们是在生物材料使用,用于感测响应材料,活性材料在机器人,有吸引力具体,三嵌段BCP(例如带有疏溶剂性末端(B)嵌段的BAB)会形成低浓度的胶束分散体,而较高浓度的凝胶会形成胶体分散体,使其成为利用这些BAB–BCP溶液结构的各种应用中有用的一类柔软材料。在这项工作中,我们通过结合使用粗粒化粗蛋白和粗蛋白的组合,研究了NPs对溶剂性,BCP组成和NP对BAB-BCP的一个或两个嵌段的亲和力的影响,对NPs对BAB-BCP组装的影响进行了全面研究。颗粒分子动力学(MD)模拟和PRISM理论。之所以使用这种双重理论模拟方法,是因为PRISM理论提供给定BCP-NP解决方案的结构和热力学信息要比MD模拟快得多,但是PRISM理论仅在解决方案仍然无序的情况下才收敛到数值解。所以,我们使用PRISM理论在低疏溶剂性(溶液仍处于无序状态)条件下筛选BAB-BCP溶液,并根据BCP组成,浓度和NP亲和力鉴定凝胶形成以及微相和宏观相分离的特征。然后,使用MD模拟,以增加的疏溶剂性作为系统顺序,我们以有序的形态,具有和不具有NP的A嵌段和B嵌段所采用的构象,NP摄取量和NP在组装结构中的空间排列。本文演示了如何以协同方式最佳利用PRISM理论和MD模拟来筛选用于聚合物和纳米粒子系统的大型材料设计空间。
更新日期:2018-01-31
down
wechat
bug