当前位置: X-MOL 学术Nucleic Acids Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metabolic and chemical regulation of tRNA modification associated with taurine deficiency and human disease
Nucleic Acids Research ( IF 14.9 ) Pub Date : 2018-01-30 , DOI: 10.1093/nar/gky068
Kana Asano 1 , Takeo Suzuki 1 , Ayaka Saito 1 , Fan-Yan Wei 2 , Yoshiho Ikeuchi 3 , Tomoyuki Numata 4 , Ryou Tanaka 5 , Yoshihisa Yamane 5 , Takeshi Yamamoto 6 , Takanobu Goto 7 , Yoshihito Kishita 8 , Kei Murayama 9 , Akira Ohtake 10 , Yasushi Okazaki 8, 11 , Kazuhito Tomizawa 2 , Yuriko Sakaguchi 1 , Tsutomu Suzuki 1
Affiliation  

Modified uridine containing taurine, 5-taurinomethyluridine (τm5U), is found at the anticodon first position of mitochondrial (mt-)transfer RNAs (tRNAs). Previously, we reported that τm5U is absent in mt-tRNAs with pathogenic mutations associated with mitochondrial diseases. However, biogenesis and physiological role of τm5U remained elusive. Here, we elucidated τm5U biogenesis by confirming that 5,10-methylene-tetrahydrofolate and taurine are metabolic substrates for τm5U formation catalyzed by MTO1 and GTPBP3. GTPBP3-knockout cells exhibited respiratory defects and reduced mitochondrial translation. Very little τm5U34 was detected in patient’s cells with the GTPBP3 mutation, demonstrating that lack of τm5U results in pathological consequences. Taurine starvation resulted in downregulation of τm5U frequency in cultured cells and animal tissues (cat liver and flatfish). Strikingly, 5-carboxymethylaminomethyluridine (cmnm5U), in which the taurine moiety of τm5U is replaced with glycine, was detected in mt-tRNAs from taurine-depleted cells. These results indicate that tRNA modifications are dynamically regulated via sensing of intracellular metabolites under physiological condition.

中文翻译:

与牛磺酸缺乏和人类疾病相关的tRNA修饰的代谢和化学调控

改性的含尿苷牛磺酸,5- taurinomethyluridine(τM 5 U),在线粒体(MT-)转运RNA(tRNA的)的反密码子的第一位置中。此前,我们报道了τM 5 U是在MT-tRNA的与线粒体疾病相关的基因突变致病缺席。然而,生源和τM的生理作用5 ü仍然难以捉摸。在这里,我们阐述τM 5通过确认5,10-亚甲基-四氢叶酸和牛磺酸是τM代谢底物生物合成ü 5 ü形成由MTO1和GTPBP3催化。GTPBP3-敲除细胞表现出呼吸缺陷和线粒体翻译减少。很少τM 5U34在病人对细胞中检测GTPBP3突变,表明缺乏τM的5 ü导致病理后果。牛磺酸饥饿导致τM的下调5在培养的细胞和动物组织(肝猫和比目鱼)U频率。引人注目的是,5-carboxymethylaminomethyluridine(cmnm 5 U),其中τM的牛磺酸部分5 U被替换为甘氨酸,在MT-tRNA的检测从牛磺酸缺失的细胞。这些结果表明,在生理条件下通过感测细胞内代谢物可动态调节tRNA修饰。
更新日期:2018-01-30
down
wechat
bug