当前位置: X-MOL 学术Annu. Rev. Food Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Application of Microrheology in Food Science
Annual Review of Food Science and Technology ( IF 12.4 ) Pub Date : 2017-02-28 00:00:00 , DOI: 10.1146/annurev-food-030216-025859
Nan Yang 1 , Ruihe Lv 1 , Junji Jia 2 , Katsuyoshi Nishinari 1 , Yapeng Fang 1
Affiliation  

Microrheology provides a technique to probe the local viscoelastic properties and dynamics of soft materials at the microscopic level by observing the motion of tracer particles embedded within them. It is divided into passive and active microrheology according to the force exerted on the embedded particles. Particles are driven by thermal fluctuations in passive microrheology, and the linear viscoelasticity of samples can be obtained on the basis of the generalized Stokes-Einstein equation. In active microrheology, tracer particles are controlled by external forces, and measurements can be extended to the nonlinear regime. Microrheology techniques have many advantages such as the need for only small sample amounts and a wider measurable frequency range. In particular, microrheology is able to examine the spatial heterogeneity of samples at the microlevel, which is not possible using traditional rheology. Therefore, microrheology has considerable potential for studying the local mechanical properties and dynamics of soft matter, particularly complex fluids, including solutions, dispersions, and other colloidal systems. Food products such as emulsions, foams, or gels are complex fluids with multiple ingredients and phases. Their macroscopic properties, such as stability and texture, are closely related to the structure and mechanical properties at the microlevel. In this article, the basic principles and methods of microrheology are reviewed, and the latest developments and achievements of microrheology in the field of food science are presented.

中文翻译:


微流变学在食品科学中的应用

微观流变学提供了一种技术,通过观察嵌入在其中的示踪剂颗粒的运动,在微观水平上探测软质材料的局部粘弹性和动力学。根据施加在嵌入颗粒上的力,它分为被动和主动微流变学。被动微观流变学中的热波动驱动颗粒,并且可以基于广义的Stokes-Einstein方程获得样品的线性粘弹性。在主动微流变学中,示踪剂颗粒受外力控制,并且测量可以扩展到非线性状态。微流变技术具有许多优势,例如只需要少量的样品和更宽的可测量频率范围。尤其是,微观流变学能够在微观水平上检查样品的空间异质性,这是使用传统流变学无法实现的。因此,微流变学在研究软物质,特别是复杂流体,包括溶液,分散体和其他胶体系统的局部力学性能和动力学方面具有相当大的潜力。乳剂,泡沫或凝胶等食品是具有多种成分和相的复杂流体。它们的宏观性质,例如稳定性和质地,在微观上与结构和机械性质密切相关。本文综述了微流变学的基本原理和方法,并介绍了食品科学领域微流变学的最新进展和成就。因此,微流变学在研究软物质,特别是复杂流体,包括溶液,分散体和其他胶体系统的局部力学性能和动力学方面具有相当大的潜力。乳化剂,泡沫或凝胶等食品是具有多种成分和相的复杂流体。它们的宏观性质,例如稳定性和质地,在微观上与结构和机械性质密切相关。本文综述了微流变学的基本原理和方法,并介绍了食品科学领域微流变学的最新进展和成就。因此,微流变学在研究软物质,特别是复杂流体,包括溶液,分散体和其他胶体系统的局部力学性能和动力学方面具有相当大的潜力。乳化剂,泡沫或凝胶等食品是具有多种成分和相的复杂流体。它们的宏观性质,例如稳定性和质地,在微观上与结构和机械性质密切相关。本文综述了微流变学的基本原理和方法,并介绍了食品科学领域微流变学的最新进展和成就。和其他胶体系统。乳化剂,泡沫或凝胶等食品是具有多种成分和相的复杂流体。它们的宏观性质,例如稳定性和质地,在微观上与结构和机械性质密切相关。本文综述了微流变学的基本原理和方法,并介绍了食品科学领域微流变学的最新进展和成就。和其他胶体系统。乳化剂,泡沫或凝胶等食品是具有多种成分和相的复杂流体。它们的宏观性质,例如稳定性和质地,在微观上与结构和机械性质密切相关。本文综述了微流变学的基本原理和方法,并介绍了食品科学领域微流变学的最新进展和成就。

更新日期:2017-02-28
down
wechat
bug