当前位置: X-MOL 学术Org. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Doped armchair germanene nanoribbon exhibiting negative differential resistance and analysing its nano-FET performance
Organic Electronics ( IF 3.2 ) Pub Date : 2018-01-04 , DOI: 10.1016/j.orgel.2017.12.039
Sukhbir Singh , Komal Garg , Ashutosh Sareen , Ravi Mehla , Inderpreet Kaur

Density functional theory (DFT) combined with non-equilibrium Green's function (NEGF) formalism is performed to explore electronic properties (geometrical stability, band structure and density of states) and quantum transport properties (transmission spectrum and I–V characteristics) of armchair germanene nanoribbon (AGeNR) doped with various elements, such as Ga, In, Tl, As, Sb and Bi. A negative differential resistance is observed for each doped AGeNR. Our results indicate that the indium (In) atom doped AGeNR is the most geometrically stable structure and provides a maximum peak to valley current ratio (Ip/Iv = 1.95). Further, In atom doped AGeNR is proposed for field effect transistor (AGeNR-FET) formation using the high dielectric constant value of hafnium dioxide (HfO2 = 25) at different applied gate voltages (−0.5 V–0.5 V). Finally, AGeNR-FET parameters are also calculated which shows high transconductance i.e. 56,196.3 nΩ−1, high charge mobility i.e. 2.6 × 104 cm2 V−1 s−1 and low subthreshold swing i.e. 39.39 mV/decade. Our findings have great application in digital devices and memory devices, and high frequency applications for future nanoelectronics and nanodevices.



中文翻译:

掺杂的扶手椅锗烯纳米带表现出负微分电阻并分析其纳米FET性能

结合密度泛函理论(DFT)和非平衡格林函数(NEGF)形式主义,研究扶手椅锗烯的电子性质(几何稳定性,能带结构和态密度)和量子输运性质(透射光谱和I–V特性)纳米带(AGeNR)掺杂有各种元素,例如Ga,In,Tl,As,Sb和Bi。对于每个掺杂的AGeNR,观察到负的差分电阻。我们的结果表明,掺有铟(In)原子的AGeNR是最稳定的几何结构,并提供最大的峰谷电流比(I p / I v  = 1.95)。此外,提出了使用In掺杂的AGeNR用于使用高介电常数二氧化ha(HfO)的场效应晶体管(AGeNR-FET)的形成。2  = 25)在不同的施加栅极电压(-0.5 V–0.5 V)下。最后,还计算出AGeNR-FET参数,该参数显示出高跨导,即56,196.3nΩ -1,高电荷迁移率,即2.6×10 4  cm 2  V -1  s -1和低亚阈值摆幅,即39.39 mV /十倍。我们的发现在数字设备和存储设备以及未来的纳米电子学和纳米设备的高频应用中具有广泛的应用。

更新日期:2018-01-04
down
wechat
bug