当前位置: X-MOL 学术ChemElectroChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
SnS/SnSb@C Nanofibers with Enhanced Cycling Stability via Vulcanization as an Anode for Sodium‐Ion Batteries
ChemElectroChem ( IF 4 ) Pub Date : 2018-02-12 , DOI: 10.1002/celc.201701270
Jian Zhu 1, 2 , Chaoqun Shang 2 , Zhenyu Wang 2 , Junjun Zhang 2 , Ying Liu 2 , Shuai Gu 2 , Liangjun Zhou 2 , Hua Cheng 2 , Yingying Gu 1 , Zhouguang Lu 2
Affiliation  

Exploring resource‐abundant and high‐performance anode materials for sodium‐ion batteries remains a critical challenge in current research. For example, the practical applications of sodium‐ion batteries are restricted by the severe volume variation of active materials on the anode, which often results in irreversible capacity loss and poor cycling performance. Utilizing the different redox potential of metals is shown to be an effective way to alleviating volume changes. Here, we demonstrate that SnS/SnSb‐nanoparticle‐decorated carbon nanofibers (SnS/SnSb@C) prepared via vulcanization are a promising candidate as the anode material for sodium‐ion batteries. The resultant SnS/SnSb@C composites show an impressive electrochemical performance, featuring a large discharge capacity (1028 mAh g−1 at 50 mA g−1), rate capability (159 mAh g−1 at 2 A g−1), and excellent cycling stability (270 mAh g−1 at 200 mA g−1 after 200 cycles). The different sodiation/desodiation potential of Sn and Sb in the SnS/SnSb@C composite helps to alleviate the volume expansion during cycling, and the defects within carbon nanofibers caused by sulfur doping further promote fast ion and electron transport in sodium‐ion batteries.

中文翻译:

通过硫化作为钠离子电池的阳极,具有增强的循环稳定性的SnS / SnSb @ C纳米纤维

探索用于钠离子电池的资源丰富且高性能的负极材料仍然是当前研究的关键挑战。例如,钠离子电池的实际应用受到阳极上活性物质的严重体积变化的限制,这通常会导致不可逆的容量损失和较差的循环性能。利用金属的不同氧化还原电位被证明是减轻体积变化的有效方法。在这里,我们证明了通过硫化制备的SnS / SnSb纳米颗粒修饰的碳纳米纤维(SnS / SnSb @ C)是钠​​离子电池负极材料的有希望的候选者。所得的SnS / SnSb @ C复合材料表现出令人印象深刻的电化学性能,具有大的放电容量(在50 mA g时为1028 mAh g -1-1),速率能力(在2 A g -1时为159 mAh g -1)和出色的循环稳定性(200个循环后在200 mA g -1时为270 mAh g -1)。SnS / SnSb @ C复合材料中Sn和Sb的不同的氧化/脱硫电位有助于缓解循环过程中的体积膨胀,硫掺杂引起的碳纳米纤维内部的缺陷进一步促进了钠离子电池中离子和电子的快速迁移。
更新日期:2018-02-12
down
wechat
bug