当前位置: X-MOL 学术Sens. Actuators B Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Superhydrophilic ZnO nanoneedle array: Controllable in situ growth on QCM transducer and enhanced humidity sensing properties and mechanism
Sensors and Actuators B: Chemical ( IF 8.4 ) Pub Date : 2018-01-11 , DOI: 10.1016/j.snb.2018.01.110
Xiaoli Cha , Fanfei Yu , Yu Fan , Jiafan Chen , Luyu Wang , Qun Xiang , Zhiming Duan , Jiaqiang Xu

Humidity sensors have attracted intensive interest due to their significant air humidity monitoring values. But it is still a challenge in achieving highly sensitive and accurate humidity sensors with a rapid and convenient method. And only few studies examined the relationship between the sensing and the wetting behavior of sensing materials. Here, we propose a novel strategy for designing humidity sensor by using superhydrophilic ZnO nanoneedle array. Via this smart design, superhydrophilic ZnO nanoneedle array was first in-situ grown on the electrode of quartz crystal microbalance (QCM) transducers by a facile chemical deposition method in solution. The design admits the water molecule easily reach the internal and outer surface of the array, further form multi-molecular-layer adsorption mode on the surface based on a physical adsorption effect between water molecule and superhydrophilic ZnO nanoneedle array. The characterization and sensing results show that the sensors constructed from superhydrophilic ZnO nanoneedles with a defined morphology exhibit enhanced humidity sensing properties including high sensitivity (21.4 Hz/%RH, at 95%RH), fast response/recovery speed (2 s/2 s, at 33%RH), well reproducibility, and narrow hysteresis (Maximum 2%RH) compared with the hydrophilic ZnO seeds and the superhydrophobic ZnO nanoneedles. Finally, the humidity sensing mechanism was also discussed in detail.



中文翻译:

超亲水性ZnO纳米针阵列:在QCM换能器上可控的原位生长并增强了湿度感应特性和机理

湿度传感器由于其重要的空气湿度监测值而引起了广泛的关注。但是,采用快速便捷的方法来实现高度灵敏,准确的湿度传感器仍然是一个挑战。而且只有很少的研究检查了感测材料与感测材料的润湿行为之间的关系。在这里,我们提出了一种使用超亲水性ZnO纳米针阵列设计湿度传感器的新策略。通过这种智能设计,首先通过一种简便的化学沉积方法在溶液中将超亲水性ZnO纳米针阵列原位生长在石英晶体微天平(QCM)换能器的电极上。该设计允许水分子轻松到达阵列的内表面和外表面,进一步基于水分子与超亲水ZnO纳米针阵列之间的物理吸附作用,在表面上形成多分子层吸附模式。表征和感测结果表明,由具有特定形态的超亲水性ZnO纳米针构造的传感器显示出增强的湿度感测特性,包括高灵敏度(21.4 Hz /%RH,在95%RH时),快速响应/恢复速度(2 s / 2 s) ,在33%RH时),与亲水性ZnO晶种和超疏水性ZnO纳米针相比,具有良好的重现性和窄的磁滞现象(最大2%RH)。最后,还详细讨论了湿度感应机制。表征和感测结果表明,由具有特定形态的超亲水性ZnO纳米针构造的传感器显示出增强的湿度感测特性,包括高灵敏度(21.4 Hz /%RH,在95%RH时),快速响应/恢复速度(2 s / 2 s) ,在33%RH时),与亲水性ZnO晶种和超疏水性ZnO纳米针相比,具有良好的重现性和狭窄的磁滞现象(最大2%RH)。最后,还详细讨论了湿度感应机制。表征和感测结果表明,由具有特定形态的超亲水性ZnO纳米针构造的传感器显示出增强的湿度感测特性,包括高灵敏度(21.4 Hz /%RH,在95%RH时),快速响应/恢复速度(2 s / 2 s) ,在33%RH时),与亲水性ZnO晶种和超疏水性ZnO纳米针相比,具有良好的重现性和狭窄的磁滞现象(最大2%RH)。最后,还详细讨论了湿度传感机制。

更新日期:2018-01-11
down
wechat
bug