当前位置: X-MOL 学术Mater. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
How grain boundary chemistry controls the fracture mode of molybdenum
Materials & Design ( IF 8.4 ) Pub Date : 2018-03-01 , DOI: 10.1016/j.matdes.2018.01.012
K. Leitner , D. Scheiber , S. Jakob , S. Primig , H. Clemens , E. Povoden-Karadeniz , L. Romaner

Abstract The design of metallic alloys with superior properties requires a deep understanding of the atomistic processes governing the materials behavior. In this paper, we present results providing a close link between grain boundary (GB) chemistry and fracture behavior in a Mo-Hf alloy. By combining atom probe tomography and ab-initio simulations of GBs, we unravel the origin for the transition between intergranular and transgranular fracture in technological Mo-Hf alloys. The main agent affecting GB strength is not the primary alloying element Hf, but rather the impurities O, C and B. With larger Hf additions, an intricate interplay between segregation and precipitation leads to a strong GB enrichment of C and B and to a depletion of O and Hf resulting in a higher cohesion of the GBs and thus, leading to a change in fracture mode. Our investigation exemplarily demonstrates that smallest additions of solutes can be decisive for understanding fracture behavior on the macroscale.

中文翻译:

晶界化学如何控制钼的断裂模式

摘要 具有优异性能的金属合金的设计需要深入了解控制材料行为的原子过程。在本文中,我们展示了提供 Mo-Hf 合金中晶界 (GB) 化学和断裂行为之间的密切联系的结果。通过结合原子探针断层扫描和 GB 的 ab-initio 模拟,我们揭示了技术 Mo-Hf 合金中晶间和穿晶断裂转变的起源。影响 GB 强度的主要因素不是主要的合金元素 Hf,而是杂质 O、C 和 B。随着 Hf 添加量的增加,偏析和沉淀之间复杂的相互作用导致 C 和 B 的 GB 强烈富集和消耗O 和 Hf 导致 GB 更高的内聚力,从而导致断裂模式的变化。
更新日期:2018-03-01
down
wechat
bug