当前位置: X-MOL 学术Mater. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of new β/α″-Ti-Nb-Zr biocompatible coating with low Young's modulus and high toughness for medical applications
Materials & Design ( IF 8.4 ) Pub Date : 2018-03-01 , DOI: 10.1016/j.matdes.2018.01.014
E. Frutos , M. Karlík , J.A. Jiménez , H. Langhansová , J. Lieskovská , T. Polcar

Abstract Ideal biomaterials to fabricate orthopedic implants, especially for load-bearing joint replacements, should include only non-toxic elements with good biocompatibility, high corrosion resistance and surface bioactivity, together with a good combination of mechanical properties. Based on these criteria, a manufacturing approach based on sputtering techniques can be ideal to develop coatings free of toxic elements tailored for advanced applications on pure titanium or titanium alloys used in biomedical applications. In this work, the ternary Ti-Nb-Zr system was used to develop non-toxic β-rich Ti coatings with several complex microstructures by careful control of Nb and Zr concentration and deposition parameters, such as bias voltage. Depending on the alloy chemistry and processing, the coating included variable amounts of α- , α″- and β-phases of Ti with different morphologies and crystallographic texture. Mechanical properties of every coating is largely determined by the micro-structure present, which is directly related to bias voltage used during sputtering process. Thus, hardness values change as a function of the compressive residual stresses magnitude and Young's modulus decreased from 63 GPa, at 0 V, to 47 GPa, at −63 V, being this value close to human bone (~30 GPa). After that, Young's modulus progressively increases to 89 GPa, at −148 V. On the other hand, bioactivity of the coating is practically doubled when compared to Ti6Al4V alloy.

中文翻译:

开发用于医疗应用的具有低杨氏模量和高韧性的新型 β/α"-Ti-Nb-Zr 生物相容性涂层

摘要 制造骨科植入物的理想生物材料,尤其是承重关节置换物,应仅包含具有良好生物相容性、高耐腐蚀性和表面生物活性的无毒元素,以及良好的机械性能组合。基于这些标准,基于溅射技术的制造方法可以理想地开发不含有毒元素的涂层,这些涂层专为生物医学应用中使用的纯钛或钛合金的高级应用量身定制。在这项工作中,通过仔细控制 Nb 和 Zr 的浓度和沉积参数(如偏置电压),三元 Ti-Nb-Zr 系统用于开发具有多种复杂微观结构的无毒富含 β 的 Ti 涂层。根据合金的化学性质和加工工艺,涂层包含不同数量的 α- 、具有不同形貌和晶体织构的 Ti 的 α″相和 β 相。每个涂层的机械性能在很大程度上取决于存在的微观结构,这与溅射过程中使用的偏置电压直接相关。因此,硬度值随压缩残余应力大小而变化,杨氏模量从 0 V 时的 63 GPa 降低到 -63 V 时的 47 GPa,该值接近于人体骨骼 (~30 GPa)。之后,杨氏模量在 -148 V 下逐渐增加到 89 GPa。另一方面,与 Ti6Al4V 合金相比,涂层的生物活性实际上增加了一倍。这与溅射过程中使用的偏置电压直接相关。因此,硬度值随压缩残余应力大小而变化,杨氏模量从 0 V 时的 63 GPa 降低到 -63 V 时的 47 GPa,该值接近于人体骨骼 (~30 GPa)。之后,杨氏模量在 -148 V 下逐渐增加到 89 GPa。另一方面,与 Ti6Al4V 合金相比,涂层的生物活性实际上增加了一倍。这与溅射过程中使用的偏置电压直接相关。因此,硬度值随压缩残余应力大小而变化,杨氏模量从 0 V 时的 63 GPa 降低到 -63 V 时的 47 GPa,该值接近于人体骨骼 (~30 GPa)。之后,杨氏模量在 -148 V 下逐渐增加到 89 GPa。另一方面,与 Ti6Al4V 合金相比,涂层的生物活性实际上增加了一倍。
更新日期:2018-03-01
down
wechat
bug