当前位置: X-MOL 学术Bioresource Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modelling for reactor-style aerobic composting based on coupling theory of mass-heat-momentum transport and Contois equation
Bioresource Technology ( IF 11.4 ) Pub Date : 2018-01-09 , DOI: 10.1016/j.biortech.2018.01.040
Xueqin He , Lujia Han , Jinyi Ge , Guangqun Huang

This study establishes an optimal mathematical modelling to rationally describe the dynamic changes and spatial distribution of temperature and oxygen concentration in the aerobic composting process using coupling mass-heat-momentum transfer based on the microbial mechanism. Two different conditional composting experiments, namely continuous aeration and intermittent aeration, were performed to verify the proposed model. The results show that the model accurately predicted the dynamic changes in temperature (case I: R2 = 0.93, RMSE = 1.95 K; case II: R2 = 0.86, RMSE = 4.69 K) and oxygen concentration (case I: R2 = 0.90, RMSE = 1.26%; case II: R2 = 0.75, RMSE = 2.93%) in the central point of compost substrates. It also systematically simulated fluctuations in oxygen concentration caused by boundary conditions and the spatial distribution of the actual temperature and oxygen concentration. The proposed model exhibits good applicability in simulating the actual working conditions of aerobic composting process.



中文翻译:

基于质热动量传递理论和Contois方程的反应堆式好氧堆肥建模

本研究建立了一个优化的数学模型,通过基于微生物机理的质量-热-动量传递,合理地描述了好氧堆肥过程中温度和氧气浓度的动态变化以及空间分布。进行了两个不同的条件堆肥实验,即连续曝气和间歇曝气,以验证所提出的模型。结果表明,该模型准确地预测了温度(情况I:R 2  = 0.93,RMSE = 1.95 K;情况II:R 2  = 0.86,RMSE = 4.69 K)和氧气浓度(情况I:R 2  =)的动态变化。 0.90,RMSE = 1.26%;案例II:R 2 = 0.75,RMSE = 2.93%)。它还系统地模拟了边界条件引起的氧气浓度波动以及实际温度和氧气浓度的空间分布。该模型在模拟好氧堆肥过程的实际工作条件方面具有良好的适用性。

更新日期:2018-01-09
down
wechat
bug