当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ab Initio Optimized Effective Potentials for Real Molecules in Optical Cavities: Photon Contributions to the Molecular Ground State.
ACS Photonics ( IF 7 ) Pub Date : 2018-01-09 , DOI: 10.1021/acsphotonics.7b01279
Johannes Flick 1 , Christian Schäfer 1 , Michael Ruggenthaler 1 , Heiko Appel 1 , Angel Rubio 1, 2
Affiliation  

We introduce a simple scheme to efficiently compute photon exchange-correlation contributions due to the coupling to transversal photons as formulated in the newly developed quantum-electrodynamical density-functional theory (QEDFT).1-5 Our construction employs the optimized-effective potential (OEP) approach by means of the Sternheimer equation to avoid the explicit calculation of unoccupied states. We demonstrate the efficiency of the scheme by applying it to an exactly solvable GaAs quantum ring model system, a single azulene molecule, and chains of sodium dimers, all located in optical cavities and described in full real space. While the first example is a two-dimensional system and allows to benchmark the employed approximations, the latter two examples demonstrate that the correlated electron-photon interaction appreciably distorts the ground-state electronic structure of a real molecule. By using this scheme, we not only construct typical electronic observables, such as the electronic ground-state density, but also illustrate how photon observables, such as the photon number, and mixed electron-photon observables, for example, electron-photon correlation functions, become accessible in a density-functional theory (DFT) framework. This work constitutes the first three-dimensional ab initio calculation within the new QEDFT formalism and thus opens up a new computational route for the ab initio study of correlated electron-photon systems in quantum cavities.

中文翻译:

从头开始针对光腔中的真实分子优化了有效电位:光子对分子基态的贡献。

我们引入了一种简单的方案来有效地计算光子交换相关贡献,这是由于新开发的量子电动力学密度泛函理论(QEDFT)中公式化了与横向光子的耦合所产生的。1-5我们的结构采用了有效有效电位(OEP) )借助Sternheimer方程来避免显式计算未占用状态。我们通过将其应用到一个完全可解决的GaAs量子环模型系统,一个单一的a烯分子以及钠二聚体链来证明该方案的效率,这些方案全部位于光腔中,并在完整的真实空间中进行了描述。尽管第一个示例是二维系统,并且可以对所采用的近似值进行基准测试,后两个例子表明,相关的电子-光子相互作用明显扭曲了真实分子的基态电子结构。通过使用该方案,我们不仅构造了典型的电子可观测物,例如电子基态密度,而且还说明了如何观察光子,例如光子数,以及混合的电子-光子可观测物,例如电子-光子相关函数。可以在密度泛函理论(DFT)框架中访问。这项工作构成了新的QEDFT形式主义中的第一个三维从头计算,从而为量子腔中相关电子-光子系统的从头研究开辟了一条新的计算途径。我们不仅构建了典型的电子可观测物(例如电子基态密度),而且还说明了如何在光子中访问光子可观测物(例如光子数)和混合的电子-光子可观测物(例如电子-光子相关函数)。密度泛函理论(DFT)框架。这项工作构成了新的QEDFT形式主义中的第一个三维从头计算,从而为量子腔中相关电子-光子系统的从头研究开辟了一条新的计算途径。我们不仅构建了典型的电子可观测物(例如电子基态密度),而且还说明了如何在光子中访问光子可观测物(例如光子数)和混合的电子-光子可观测物(例如电子-光子相关函数)。密度泛函理论(DFT)框架。这项工作构成了新的QEDFT形式主义中的第一个三维从头计算,从而为量子腔中相关电子-光子系统的从头研究开辟了一条新的计算途径。
更新日期:2018-01-09
down
wechat
bug