当前位置: X-MOL 学术Adv. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Vapor‐Phase Polymerization and Carbonization to Nitrogen‐Doped Carbon Nanoscale Networks with Designable Pore Geometries Templated from Block Copolymers
Advanced Materials Interfaces ( IF 5.4 ) Pub Date : 2018-01-08 , DOI: 10.1002/admi.201701390
Ang Zhang 1 , Ting Qu 1 , Shubo Cao 1 , Yayuan Li 1 , Yongbin Zhao 2 , Aihua Chen 1, 3
Affiliation  

3D interconnected nitrogen‐doped carbon nanoscale networks (N‐CNNs) with designable pore geometries are prepared by vapor‐phase polymerization approach and subsequent carbonization using self‐assembled block copolymer (BCP) polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) with bicontinuous structures as templates. PS‐b‐P4VP monolithic membranes composed of interconnected micellar fibers or spheres with PS@P4VP core–shell structure are obtained by swelling lamellar supramolecular membranes of PS‐b‐P4VP and 3‐n‐pentadecylphenol (PDP) via hydrogen bonding. Importantly, the morphologies of self‐assembled BCP can be tuned by just adjusting swelling time for the same PS‐b‐P4VP(PDP). The vapor‐phase polymerization strategy is adopted for the first time to complex iodine to P4VP shell layers and subsequently initiates the polymerization of pyrrole to form polypyrrole on the outside of PS@P4VP core–shell structures. After carbonization, the BCP templates are removed and N‐CNNs with different pore geometries are obtained. The interconnected network structures and the introduction of nitrogen in carbon nanoscale networks make them particularly promising in many applications such as oxygen reduction reaction (ORR). The N‐CNN templated from micellar fibers (N‐CNN‐F), as a metal‐free ORR catalyst, displays comparable performance with Pt/C in alkaline media. The study provides not only a new synthesis method, but also important insight into designing 3D networks with open‐celled pores for ORR and other applications.

中文翻译:

气相聚合和碳化成具有氮的碳纳米级网络,该网络具有可设计的以嵌段共聚物为模板的孔几何形状

通过汽相聚合方法并随后使用自组装嵌段共聚物(BCP)聚苯乙烯嵌段-聚(4-乙烯基吡啶)(PS- b- P4VP),以双连续结构作为模板。PS‐ b ‐ P4VP整体膜由相互连接的胶束纤维或具有PS @ P4VP核-壳结构的球组成,是通过氢键合使PS‐ b ‐ P4VP和3- n‐十五烷基苯酚(PDP)的层状超分子膜膨胀而获得的。重要的是,只需调整同一PS- b的溶胀时间,即可调整自组装BCP的形态-P4VP(PDP)。首次采用气相聚合策略将碘络合至P4VP壳层,随后引发吡咯的聚合,从而在PS @ P4VP核壳结构的外部形成聚吡咯。碳化后,去除BCP模板,并获得具有不同孔几何形状的N-CNN。互连的网络结构以及碳纳米级网络中氮的引入,使其在许多应用中特别有希望,例如氧还原反应(ORR)。以胶束纤维(N-CNN-F)为模板的N-CNN作为无金属的ORR催化剂,在碱性介质中表现出与Pt / C相当的性能。该研究不仅提供了一种新的合成方法,而且为设计具有开放式孔的3D网络以用于ORR和其他应用提供了重要的见识。
更新日期:2018-01-08
down
wechat
bug