当前位置: X-MOL 学术Int. J. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analytical modeling of oscillatory heat transfer in coated sorption beds
International Journal of Heat and Mass Transfer ( IF 5.2 ) Pub Date : 2018-06-01 , DOI: 10.1016/j.ijheatmasstransfer.2017.12.147
Hesam Bahrehmand , Mehran Ahmadi , Majid Bahrami

Abstract A novel analytical model that considers the thermal contact resistance (TCR) at the interface between the sorbent layer and heat exchanger (HEX) is developed to investigate the oscillatory heat transfer and performance of coated sorption beds. The governing energy equation is solved using an orthogonal expansion technique and closed-form relationships are obtained to calculate the temperature distribution inside the sorbent coating and HEX. In addition, a new gravimetric large pressure jump (GLAP) test bed is designed to measure the uptake of sorption material. Novel graphite coated sorption beds were prepared and tested in the GLAP test bed. The model was successfully validated with the measurements performed in the GLAP test bed. It is found that specific cooling power (SCP) of a sorption cooling system (SCS) enhances by increasing the sorbent thermal diffusivity and decreasing the TCR. For example, SCP of the sorption cooling system (SCS) can be enhanced from 90 to 900 (W/kg) by increasing the sorbent thermal diffusivity from 2.5e−7 to 5.25e−6 (m2/s) and decreasing the TCR from 4 to 0.3 (K/W). Moreover, the results show that SCP increases by reducing the HEX to sorbent thickness ratio (HSTR). Therefore, the proposed graphite coated sorption beds with high thermal diffusivity and low thickness are suitable for sorption cooling applications.

中文翻译:

涂层吸附床中振荡传热的分析建模

摘要 为了研究涂层吸附床的振荡传热和性能,开发了一种新的分析模型,该模型考虑了吸附剂层和换热器 (HEX) 之间界面处的接触热阻 (TCR)。使用正交膨胀技术求解控制能量方程,并获得封闭形式的关系,以计算吸附剂涂层和 HEX 内部的温度分布。此外,设计了一个新的重力式大压力跳跃 (GLAP) 试验台来测量吸附材料的吸收。制备了新型石墨涂层吸附床并在 GLAP 测试床中进行了测试。该模型通过在 GLAP 测试台上进行的测量得到了成功验证。发现吸附冷却系统 (SCS) 的比冷却功率 (SCP) 通过增加吸附剂热扩散率和降低 TCR 来提高。例如,吸附冷却系统 (SCS) 的 SCP 可以通过将吸附剂热扩散率从 2.5e-7 (m2/s) 增加到 5.25e-6 (m2/s) 并将 TCR 从 90 (W/kg) 提高到4 到 0.3 (K/W)。此外,结果表明 SCP 通过降低 HEX 与吸附剂厚度比 (HSTR) 来增加。因此,所提出的具有高热扩散率和低厚度的石墨涂层吸附床适用于吸附冷却应用。25e-6 (m2/s) 并将 TCR 从 4 降低到 0.3 (K/W)。此外,结果表明 SCP 通过降低 HEX 与吸附剂厚度比 (HSTR) 来增加。因此,所提出的具有高热扩散率和低厚度的石墨涂层吸附床适用于吸附冷却应用。25e-6 (m2/s) 并将 TCR 从 4 降低到 0.3 (K/W)。此外,结果表明 SCP 通过降低 HEX 与吸附剂厚度比 (HSTR) 来增加。因此,所提出的具有高热扩散率和低厚度的石墨涂层吸附床适用于吸附冷却应用。
更新日期:2018-06-01
down
wechat
bug