当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced removal of PhACs in RBF supplemented with biofilm coated adsorbent barrier: Experimental and model studies
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2018-01-04 , DOI: 10.1016/j.cej.2017.12.099
Arya Vijayanandan , Ligy Philip , S. Murty Bhallamudi

The present study focussed on potential application of river bank filtration (RBF) for the effective removal of pharmaceutically active compounds (PhACs), namely, atenolol, ciprofloxacin and gemfibrozil. Experiments on RBF were performed in a pilot scale reactor (3.0 m × 1.0 m × 0.5 m) in which two dimensional unconfined aquifer flow conditions were induced by pumping to depict realistic field conditions. Initially, experiments were carried out in a reactor filled with natural river bed material. The natural attenuation efficiencies were found to be 21, 35 and 8% for atenolol, ciprofloxacin and gemfibrozil, respectively. Pumping experiments conducted through clean sand in RBF indicated that PhACs were highly mobile with minimal degradation. In order to improve the treatment efficiency of RBF, biofilm coated clay composite adsorbent was synthesized and used in a reactive barrier. The reactive barrier could significantly eliminate PhACs up to 80, 90, 75% for atenolol, ciprofloxacin and gemfibrozil, respectively, at the extracting well (located at 125 cm from the inlet) even after 150 h. Pumping experiments showed that 20 cm thick barrier was able to contain the movement of contaminant plume up to 4 h when water was pumped at a rate of 0.0075 L/s and up to 3.2 h when the pumping rate was 0.01 L/s. Further, a 2D reactive transport model was developed and validated based on the experimental data. The transport model would be useful for developing a management model for the optimal design of reactive barrier for enhancing the performance of RBF.



中文翻译:

补充了生物膜涂层的吸附屏障,增强了RBF中PhAC的去除:实验和模型研究

本研究集中于河岸过滤(RBF)在有效去除药物活性化合物(PhACs),即阿替洛尔,环丙沙星和吉非贝齐的潜在应用上。在中试规模的反应堆(3.0 m×1.0 m×0.5 m)中进行了RBF实验,在该反应堆中,通过抽水诱导了二维无侧限含水层流动条件,以描绘实际的田间条件。最初,实验是在装有天然河床物质的反应器中进行的。发现阿替洛尔,环丙沙星和吉非贝齐的自然衰减效率分别为21、35和8%。在RBF中通过干净的沙子进行的泵送实验表明,PhAC具有很高的流动性,且降解程度最小。为了提高RBF的治疗效率,合成了生物膜包覆的粘土复合吸附剂,并将其用于反应性屏障。即使在150小时后,反应性屏障仍可以在提取井(距进水口125 cm)处分别消除高达80%,90%,75%的阿替洛尔,环丙沙星和吉非贝齐的PhAC。抽水实验表明,当以0.0075 L / s的速度抽水时,长达20 cm的屏障能够抑制污染物羽流的运动长达4 h,而当抽水速率为0.01 L / s时,则高达3.2 h。此外,基于实验数据,开发并验证了二维反应运输模型。运输模型对于开发用于优化反应堆屏障以提高RBF性能的管理模型将是有用的。即使在150小时后,提取井(距进水口125 cm)的阿替洛尔,环丙沙星和吉非贝齐分别为90%,75%。抽水实验表明,当以0.0075 L / s的速度抽水时,长达20 cm的屏障能够抑制污染物羽流的运动长达4 h,而当抽水速率为0.01 L / s时,则高达3.2 h。此外,基于实验数据,开发并验证了二维反应运输模型。运输模型对于开发用于优化反应堆屏障以提高RBF性能的管理模型将是有用的。即使在150小时后,提取井(距进水口125 cm)的阿替洛尔,环丙沙星和吉非贝齐分别为90%,75%。抽水实验表明,当以0.0075 L / s的速度抽水时,长达20 cm的屏障能够抑制污染物羽流的运动长达4 h,而当抽水速率为0.01 L / s时,则高达3.2 h。此外,基于实验数据,开发并验证了二维反应运输模型。运输模型对于开发用于优化反应堆屏障以提高RBF性能的管理模型将是有用的。抽水实验表明,当以0.0075 L / s的速度抽水时,长达20 cm的屏障能够抑制污染物羽流的运动长达4 h,而当抽水速率为0.01 L / s时,则高达3.2 h。此外,基于实验数据,开发并验证了二维反应运输模型。运输模型对于开发用于优化反应堆屏障以提高RBF性能的管理模型将是有用的。抽水实验表明,当以0.0075 L / s的速度抽水时,长达20 cm的屏障能够抑制污染物羽流的运动长达4 h,而当抽水速率为0.01 L / s时,则高达3.2 h。此外,基于实验数据,开发并验证了二维反应运输模型。运输模型对于开发用于优化反应堆屏障以提高RBF性能的管理模型将是有用的。

更新日期:2018-01-04
down
wechat
bug