当前位置: X-MOL 学术Adv. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Facile Synthesis of Nitrogen and Halogen Dual‐Doped Porous Graphene as an Advanced Performance Anode for Lithium‐Ion Batteries
Advanced Materials Interfaces ( IF 5.4 ) Pub Date : 2018-01-03 , DOI: 10.1002/admi.201701261
Huanlong Liu 1 , Yufeng Tang 1 , Wei Zhao 1 , Wei Ding 1 , Jijian Xu 1 , Chenliang Liang 1 , Zhichao Zhang 1 , Tianquan Lin 1 , Fuqiang Huang 1, 2
Affiliation  

Nonmetal‐dual doped graphene has attracted considerable attention as high‐performance anode material for lithium‐ion batteries (LIBs) due to the synergistic effects of heteroatom dopants. Herein, nitrogen and halogen (including Cl, Br, and I) dual‐doped graphene is successfully synthesized by a general wet chemical method and lithium storage performance of N, Cl codoped graphene as anode material for LIBs is investigated in detail. The dual‐doped heteroatoms introduce abundant defects and expand the interlayer spacing of graphene to benefit lithium insertion and extraction. When used as a typical anode material, the N and Cl dual‐doped porous graphene reveals a high specific capacity of 1200 mA h g−1 at 0.1 A g−1 and 1010 mA h g−1 at 1.0 A g−1. The as‐prepared sample exhibits superior cycling performance, whose specific capacity remains 95% at 5.0 A g−1 after 1800 cycles. The excellent performance mainly stems from the synergistic effect of structure modification and heteroatom doping, and the capacitive effects are dictated by kinetical analysis. The synthesized nitrogen and halogen dual‐doped porous graphene is a promising anode material for LIBs.

中文翻译:

氮和卤素双掺杂多孔石墨烯的便捷合成,作为锂离子电池的高级性能阳极

由于杂原子掺杂剂的协同作用,非金属双掺杂石墨烯作为锂离子电池(LIB)的高性能阳极材料备受关注。在此,通过常规湿化学方法成功地合成了氮和卤素(包括Cl,Br和I)双掺杂石墨烯,并详细研究了N,Cl共掺杂石墨烯作为LIBs负极材料的储锂性能。双掺杂杂原子会引入大量缺陷,并扩大石墨烯的层间间距,从而有利于锂的插入和提取。当用作典型的阳极材料时,N和Cl双掺杂多孔石墨烯在0.1 A g -1时显示出1200 mA hg -1的高比容量,在1.0 A g -1时显示出1010 mA hg -1的高比容量。。所制备的样品表现出优异的循环性能,在1800次循环后,其比容量在5.0 A g -1下仍保持95%。优异的性能主要来自于结构修饰和杂原子掺杂的协同效应,而电容效应则由动力学分析决定。合成的氮和卤素双掺杂多孔石墨烯是一种有前途的LIB阳极材料。
更新日期:2018-01-03
down
wechat
bug