当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Corrugation Architecture Enabled Ultraflexible Wafer‐Scale High‐Efficiency Monocrystalline Silicon Solar Cell
Advanced Energy Materials ( IF 27.8 ) Pub Date : 2018-01-02 , DOI: 10.1002/aenm.201702221
Rabab R. Bahabry 1 , Arwa T. Kutbee 1 , Sherjeel M. Khan 2 , Adrian C. Sepulveda 1 , Irmandy Wicaksono 3 , Maha Nour 2 , Nimer Wehbe 4 , Amani S. Almislem 2 , Mohamed T. Ghoneim 2 , Galo A. Torres Sevilla 2 , Ahad Syed 5 , Sohail F. Shaikh 2 , Muhammad M. Hussain 2
Affiliation  

Advanced classes of modern application require new generation of versatile solar cells showcasing extreme mechanical resilience, large‐scale, low cost, and excellent power conversion efficiency. Conventional crystalline silicon‐based solar cells offer one of the most highly efficient power sources, but a key challenge remains to attain mechanical resilience while preserving electrical performance. A complementary metal oxide semiconductor‐based integration strategy where corrugation architecture enables ultraflexible and low‐cost solar cell modules from bulk monocrystalline large‐scale (127 × 127 cm2) silicon solar wafers with a 17% power conversion efficiency. This periodic corrugated array benefits from an interchangeable solar cell segmentation scheme which preserves the active silicon thickness of 240 µm and achieves flexibility via interdigitated back contacts. These cells can reversibly withstand high mechanical stress and can be deformed to zigzag and bifacial modules. These corrugation silicon‐based solar cells offer ultraflexibility with high stability over 1000 bending cycles including convex and concave bending to broaden the application spectrum. Finally, the smallest bending radius of curvature lower than 140 µm of the back contacts is shown that carries the solar cells segments.

中文翻译:

波纹结构使超柔性晶圆级高效单晶硅太阳能电池成为可能

先进的现代应用要求新一代多功能太阳能电池具有极高的机械弹性,大规模,低成本和出色的功率转换效率。常规的基于晶体硅的太阳能电池提供了最高效的电源之一,但是要在保持电气性能的同时获得机械弹性仍是一项关键挑战。一种互补的基于金属氧化物半导体的集成策略,其中波纹结构可实现大块单晶大尺寸(127×127 cm 2)的超柔性和低成本太阳能电池模块)太阳能转换效率为17%的硅太阳能晶片。这种周期性的波纹状阵列得益于可互换的太阳能电池分割方案,该方案可保持240 µm的有源硅厚度,并通过叉指式背触点实现灵活性。这些电池可以可逆地承受高机械应力,并且可以变形为锯齿形和双面组件。这些基于波纹硅的太阳能电池具有超柔韧性,在包括凸弯和凹弯的1000个弯曲周期内具有很高的稳定性,从而扩大了应用范围。最终,显示了背电极的最小弯曲曲率半径小于140 µm,该最小触点曲率半径承载着太阳能电池片。
更新日期:2018-01-02
down
wechat
bug