当前位置: X-MOL 学术Appl. Catal. B Environ. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: Triple-functional role for efficient visible-light photocatalytic redox performance
Applied Catalysis B: Environment and Energy ( IF 22.1 ) Pub Date : 2018-01-01 , DOI: 10.1016/j.apcatb.2017.12.074
Shixin Yu , Yihe Zhang , Fan Dong , Min Li , Tierui Zhang , Hongwei Huang

Crystal defects of semiconductor materials exert huge impact on their physical and chemical properties. Herein, we report the development of oxygen vacancy (OV) concentration-tunable Bi2O2CO3 (BOC) via a facile and scalable precipitation approach with assistance of glyoxal as reductant at atmospheric environment. Introduction of OV takes a triple-functional role in regulating the band structure and charge movement behaviors of BOC. It not only renders appearance of defect band level in the forbidden band, allowing BOC drastically extended photoabsorption from 360 to 520 nm, but also tremendously promotes the charge carrier density, bulk charge separation, surface charge separation and interfacial charge transfer. In contrast to pristine BOC, OV-BOC demonstrates highly promoted photocatalytic performance for water splitting into H2 evolution, NO removal from the gas phase and degradation of a typical antibiotic tetracycline hydrochloride, where the H2 production is first reported for BOC. Additionally, the OV concentration of BOC can be continuously modulated only by regulating the concentration of glyoxal, thereby achieving the adjustable photoabsorption and band structure. Our work enables smart design on oxygen vacancy-activated photocatalytic materials for solar-energy-conversion applications through a readily achievable tactic.



中文翻译:

迅速在Bi 2 O 2 CO 3中实现浓度可调的氧空位:三功能作用,可实现有效的可见光光催化氧化还原性能

半导体材料的晶体缺陷对其物理和化学性质产生巨大影响。在此,我们报告了氧空位(OV)浓度可调Bi 2 O 2 CO 3的发展(BOC)通过在大气环境中使用乙二醛作为还原剂的简便,可扩展的沉淀方法。OV的引入在调节BOC的能带结构和电荷移动行为方面起着三重作用。它不仅使禁带中出现了缺陷带能级,使BOC的光吸收范围从360 nm扩展到520 nm,而且极大地促进了电荷载流子密度,体电荷分离,表面电荷分离和界面电荷转移。与原始BOC相比,OV-BOC表现出高度促进的光催化性能,可将水分解为H 2,从气相中去除NO以及降解典型的抗生素四环素盐酸盐(其中H 2首次报道中银的产量。此外,仅通过调节乙二醛的浓度就可以连续调节BOC的OV浓度,从而实现可调节的光吸收和能带结构。我们的工作可通过一种易于实现的策略,实现针对氧空位活化的光催化材料的智能设计,以用于太阳能转换应用。

更新日期:2018-01-01
down
wechat
bug