当前位置: X-MOL 学术J. Phys. Chem. C › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tailoring Optical Properties of a Large-Area Plasmonic Gold Nanoring Array Pattern
The Journal of Physical Chemistry C ( IF 3.7 ) Pub Date : 2017-12-31 00:00:00 , DOI: 10.1021/acs.jpcc.7b11660
Sujan Kasani , Peng Zheng , Nianqiang Wu

A new fabrication route, which combines nanosphere lithography with silicon-based clean-room microfabrication processes, has been developed to produce large-area long-range ordered gold nanoring array patterns in a controllable fashion. Both the experimentation and the finite-difference time-domain (FDTD) simulation show that the surface plasmon resonance peak (SPR) of the nanoring array pattern can be tuned systematically in a large spectral range by varying the geometry parameters such as the ring thickness, the ring height, the ringer outer diameter, and the gap between neighboring rings. For the Au nanoring arrays with a large gap in the absence of plasmon coupling between neighboring rings, the local electromagnetic (EM) field enhancement occurs at both the outer and inner surfaces of individual nanorings; and the periodicity of Au nanoring array has no any effect on the plasmonic properties. For the Au nanoring arrays with a small gap, plasmon coupling takes place between neighboring rings. As a result, the characteristic plasmonic band is split into two new peaks corresponding to a bonding SPR mode and an antibonding SPR mode. The local EM field enhancement becomes stronger with a decrease in the gap between neighboring rings, but the SPR peaks shift away. Therefore, to maximize the surface-enhanced Raman scattering signal, the geometry parameters of the Au nanoring array need to be tuned to balance the contributions from the resonance excitation (spectral overlap) and the local EM field enhancement.

中文翻译:

量身定制大面积等离子金纳米环阵列图案的光学性质。

已经开发出一种结合纳米球光刻技术和基于硅的洁净室微细加工工艺的新制造路线,以可控制的方式生产大面积的远距离有序金纳米环阵列图案。实验和有限差分时域(FDTD)模拟都表明,通过改变诸如环厚度之类的几何参数,可以在较大的光谱范围内系统地调节纳米环阵列图案的表面等离振子共振峰(SPR)。振铃高度,振铃器外径以及相邻振铃之间的间隙。对于在相邻环之间不存在等离激元耦合的情况下具有大间隙的Au纳米环阵列,局部电磁(EM)场增强发生在单个纳米环的外表面和内表面上。金纳米环阵列的周期性对等离子体性能没有任何影响。对于具有较小间隙的Au纳米环阵列,在相邻环之间会发生等离激元耦合。结果,特征等离激元带被分成与键合SPR模式和反键合SPR模式相对应的两个新峰。随着相邻环之间的间隙的减小,局部EM场增强变得更强,但是SPR峰移开。因此,为了最大化表面增强的拉曼散射信号,需要调整Au纳米环阵列的几何参数,以平衡共振激发(光谱重叠)和局部EM场增强的影响。等离子体激元耦合发生在相邻的环之间。结果,特征等离激元带被分成与键合SPR模式和反键合SPR模式相对应的两个新峰。随着相邻环之间的间隙的减小,局部EM场增强变得更强,但是SPR峰移开。因此,为了最大化表面增强的拉曼散射信号,需要调整Au纳米环阵列的几何参数,以平衡共振激发(光谱重叠)和局部EM场增强的影响。等离子体激元耦合发生在相邻的环之间。结果,特征等离激元带被分成与键合SPR模式和反键合SPR模式相对应的两个新峰。随着相邻环之间的间隙的减小,局部EM场增强变得更强,但是SPR峰移开。因此,为了最大化表面增强的拉曼散射信号,需要调整Au纳米环阵列的几何参数,以平衡共振激发(光谱重叠)和局部EM场增强的影响。
更新日期:2017-12-31
down
wechat
bug