当前位置: X-MOL 学术Compos. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Surface modified BaTiO 3 nanoparticles by titanate coupling agent induce significantly enhanced breakdown strength and larger energy density in PVDF nanocomposite
Composites Science and Technology ( IF 9.1 ) Pub Date : 2018-03-01 , DOI: 10.1016/j.compscitech.2017.12.025
Penghao Hu , Shengmin Gao , Yangyang Zhang , Liang Zhang , Chengchen Wang

Abstract Dielectric capacitors are promising in micro-electronics, portable equipment and hybrid electric vehicles due to their specific features of flexibility, ultrahigh operating voltage and fast charging-discharging rate. The dielectric properties of polymer-based nanocomposite are much related to the interface binding between fillers and matrix. In this work, a surface modification approach employed newfound titanate coupling agent was developed to improve the compatibility between BT nanoparticles and PVDF matrix. After treated by the modifier TC-2, a coating layer contained with active organic groups was formed on the surface of BT nanoparticles. Benefited from the improved dispersibility and compatibility of modified BT nanoparticles in PVDF matrix, the breakdown strength of the nanocomposites was much enhanced. The monodisperse mBT-2 nanoparticles treated with appropriate amount of modifier dramatically enlarged the breakdown strength from 397 kV/mm for neat PVDF to 517 kV/mm for 4 vol% mBT-2 loading nanocomposite. Compared with BT/PVDF, the improvements on the energy storage performance in mBT-2/PVDF are significant. The maximum discharged energy density of 11.27 J/cm3 for 4 vol% loading mBT-2/PVDF is nearly double of that for 4 vol% loading BT/PVDF, and the energy efficiency for mBT-2/PVDF is also increased. The modification method originally represented here has great potential in developing high energy density nanocomposites for advanced applications.

中文翻译:

钛酸酯偶联剂表面改性的BaTiO 3 纳米粒子可显着增强PVDF纳米复合材料的击穿强度和更大的能量密度

摘要 介电电容器具有柔韧性好、工作电压超高、充放电速度快等特点,在微电子、便携式设备和混合动力汽车等领域具有广阔的应用前景。聚合物基纳米复合材料的介电性能与填料和基体之间的界面结合密切相关。在这项工作中,开发了一种采用新发现的钛酸酯偶联剂的表面改性方法,以提高 BT 纳米颗粒和 PVDF 基质之间的相容性。经改性剂TC-2处理后,BT纳米粒子表面形成了含有活性有机基团的涂层。受益于改性 BT 纳米粒子在 PVDF 基体中的分散性和相容性的提高,纳米复合材料的击穿强度大大提高。用适量的改性剂处理的单分散 mBT-2 纳米颗粒将击穿强度从纯 PVDF 的 397 kV/mm 显着增加到 4 vol% mBT-2 负载纳米复合材料的 517 kV/mm。与BT/PVDF相比,mBT-2/PVDF的储能性能提升显着。负载4 vol% mBT-2/PVDF 的最大放电能量密度为11.27 J/cm3,几乎是负载4 vol% BT/PVDF 的两倍,并且mBT-2/PVDF 的能量效率也有所提高。这里最初代表的改性方法在开发用于高级应用的高能量密度纳米复合材料方面具有巨大潜力。mBT-2/PVDF 储能性能的改进是显着的。负载4 vol% mBT-2/PVDF 的最大放电能量密度为11.27 J/cm3,几乎是负载4 vol% BT/PVDF 的两倍,并且mBT-2/PVDF 的能量效率也有所提高。这里最初代表的改性方法在开发用于高级应用的高能量密度纳米复合材料方面具有巨大潜力。mBT-2/PVDF 储能性能的改进是显着的。负载4 vol% mBT-2/PVDF 的最大放电能量密度为11.27 J/cm3,几乎是负载4 vol% BT/PVDF 的两倍,并且mBT-2/PVDF 的能量效率也有所提高。这里最初代表的改性方法在开发用于高级应用的高能量密度纳米复合材料方面具有巨大潜力。
更新日期:2018-03-01
down
wechat
bug