当前位置: X-MOL 学术Compos. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly conductive nanocomposites based on cellulose nanofiber networks via NaOH treatments
Composites Science and Technology ( IF 9.1 ) Pub Date : 2018-03-01 , DOI: 10.1016/j.compscitech.2017.12.029
Chuchu Chen , Mengmin Mo , Wenshuai Chen , Mingzhu Pan , Zhaoyang Xu , Haiying Wang , Dagang Li

Abstract Developing functional nanocomposites with the utilization of the sustainable natural resources (e.g. cellulose) is one most importance strategy. In this study, a novel method was developed and used to fabricate flexible conductive nanocomposite. The key innovation of this method is that carbon nanotubes (CNTs) was incorporated into cellulose nanofiber (CNF) gel which processed by alkali treatment. We found that the gelation process caused the shrinking of CNF/CNT gel-film, which result in forming a robust 3D network structure. While the shrinking attributed to constructing high density CNTs electron transport pathways and achieve improved electrical conductivity. Results clearly show that CNFs, a dispersing agent, were used to well-dispersed the CNTs in the nanocomposite. After the alkali treatments, the as-prepared CNF/CNT gel-film had a conductivity of 5.02 S/cm, which is almost 3-fold higher than the CNF/CNT film (without alkai treatment), at 20 wt% CNTs. Conductivity of the CNF/CNT gel-film was further improved to as high as 17.04 S/cm, when adding 50 wt% CNTs. Morphology investigation exhibited that CNFs and CNTs formed into a high density 3D network affording adequate electron transport pathways, and giving the gel-film remarkable electrical conductive properties. Additionally, in lights of its excellent electrical performance, low cost, and environmental friendliness, the CNF/CNT gel-film may have a promising application in the flexible electrodes and conductive papers.

中文翻译:

通过NaOH处理基于纤维素纳米纤维网络的高导电纳米复合材料

摘要 利用可持续自然资源(例如纤维素)开发功能性纳米复合材料是一项最重要的战略。在这项研究中,开发了一种新方法并用于制造柔性导电纳米复合材料。该方法的关键创新是将碳纳米管(CNTs)掺入纤维素纳米纤维(CNF)凝胶中,经碱处理。我们发现凝胶化过程导致 CNF/CNT 凝胶膜收缩,从而形成坚固的 3D 网络结构。而收缩归因于构建高密度碳纳米管的电子传输途径并实现了改进的导电性。结果清楚地表明,CNF 是一种分散剂,用于将 CNT 很好地分散在纳米复合材料中。碱处理后,所制备的 CNF/CNT 凝胶膜的电导率为 5.02 S/cm,几乎是 CNF/CNT 膜(未经碱处理)的 3 倍,在 20 wt% 的 CNT 下。当添加 50 wt% CNT 时,CNF/CNT 凝胶膜的电导率进一步提高至 17.04 S/cm。形态学研究表明,CNFs 和 CNTs 形成高密度 3D 网络,提供足够的电子传输途径,并赋予凝胶膜显着的导电性能。此外,由于其优异的电性能、低成本和环境友好性,CNF/CNT 凝胶膜在柔性电极和导电纸中具有广阔的应用前景。当添加 50 wt% CNT 时,CNF/CNT 凝胶膜的电导率进一步提高至 17.04 S/cm。形态学研究表明,CNFs 和 CNTs 形成高密度 3D 网络,提供足够的电子传输途径,并赋予凝胶膜显着的导电性能。此外,由于其优异的电性能、低成本和环境友好性,CNF/CNT 凝胶膜在柔性电极和导电纸中具有广阔的应用前景。当添加 50 wt% CNT 时,CNF/CNT 凝胶膜的电导率进一步提高至 17.04 S/cm。形态学研究表明,CNFs 和 CNTs 形成高密度 3D 网络,提供足够的电子传输途径,并赋予凝胶膜显着的导电性能。此外,由于其优异的电性能、低成本和环境友好性,CNF/CNT 凝胶膜在柔性电极和导电纸中具有广阔的应用前景。
更新日期:2018-03-01
down
wechat
bug