当前位置: X-MOL 学术Nano Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-Assembled One-Dimensional Porphyrin Nanostructures with Enhanced Photocatalytic Hydrogen Generation
Nano Letters ( IF 10.8 ) Pub Date : 2017-12-29 00:00:00 , DOI: 10.1021/acs.nanolett.7b04701
Na Zhang 1, 2 , Liang Wang 1, 2 , Haimiao Wang 1, 2 , Ronghui Cao 1, 2 , Jiefei Wang 1, 2 , Feng Bai 1, 2 , Hongyou Fan 3, 4
Affiliation  

There has been a widespread interest in the preparation of self-assembled porphyrin nanostructures and their ordered arrays, aiming to emulate natural light harvesting processes and energy storage and to develop new nanostructured materials for photocatalytic process. Here, we report controlled synthesis of one-dimensional porphyrin nanostructures such as nanorods and nanowires with well-defined self-assembled porphyrin networks that enable efficient energy transfer for enhanced photocatalytic activity in hydrogen generation. Preparation of these one-dimensional nanostructures is conducted through noncovalent self-assembly of porphyrins confined within surfactant micelles. X-ray diffraction and transmission electron microscopy results reveal that these one-dimensional nanostructures contain stable single crystalline structures with controlled interplanar separation distance. Optical absorption characterizations show that the self-assembly enables effective optical coupling of porphyrins, resulting in much more enhanced optical absorption in comparison with the original porphyrin monomers, and the absorption bands red shift to more extensive visible light spectrum. The self-assembled porphyrin network facilitates efficient energy transfer among porphyrin molecules and the delocalization of excited state electrons for enhanced photocatalytic hydrogen production under visible light.

中文翻译:

自组装的一维卟啉纳米结构与增强的光催化氢生成

自组装卟啉纳米结构及其有序阵列的制备已引起广泛关注,其目的是模拟自然光收集过程和能量存储,并开发用于光催化过程的新型纳米结构材料。在这里,我们报告控制的一维卟啉纳米结构的合成,例如具有明确定义的自组装卟啉网络的纳米棒和纳米线,能够有效地转移能量,从而增强氢生成中的光催化活性。这些一维纳米结构的制备是通过限制在表面活性剂微团中的卟啉的非共价自组装来进行的。X射线衍射和透射电子显微镜结果表明,这些一维纳米结构包含稳定的单晶结构,且晶面间距是受控的。光学吸收特性表明,自组装能够使卟啉有效地光学偶联,与原始卟啉单体相比,吸收率大大提高,并且吸收带红移至更广泛的可见光谱。自组装的卟啉网络促进了卟啉分子之间的有效能量转移和激发态电子的离域,从而增强了可见光下的光催化氢产生。光学吸收特性表明,自组装能够使卟啉有效地光学偶联,与原始卟啉单体相比,吸收率大大提高,并且吸收带红移至更广泛的可见光谱。自组装的卟啉网络促进了卟啉分子之间的有效能量转移和激发态电子的离域,从而增强了可见光下的光催化氢产生。光学吸收特性表明,自组装能够使卟啉有效地光学偶联,与原始卟啉单体相比,吸收率大大提高,并且吸收带红移至更广泛的可见光谱。自组装的卟啉网络促进了卟啉分子之间的有效能量转移和激发态电子的离域化,从而增强了可见光下的光催化制氢。
更新日期:2017-12-29
down
wechat
bug