当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Modular Protein Cages for Size-Selective RNA Packaging in Vivo
Journal of the American Chemical Society ( IF 13.858 ) Pub Date : 2018-01-03 , DOI: 10.1021/jacs.7b10798
Yusuke Azuma, Thomas G. W. Edwardson, Naohiro Terasaka, Donald Hilvert

Protein cages have recently emerged as an important platform for nanotechnology development. Of the naturally existing protein cages, viruses are among the most efficient nanomachines, overcoming various barriers to achieve component replication and efficient self-assembly in complex biological milieu. We have designed an artificial system that can carry out the most basic steps of viral particle assembly in vivo. Our strategy is based on patchwork capsids formed from Aquifex aeolicus lumazine synthase and a circularly permuted variant with appended cationic peptides. These two-component protein containers self-assemble in vivo, capturing endogenous RNA molecules in a size-selective manner. By varying the number and design of the RNA-binding peptides displayed on the lumenal surface, the length of guest RNA can be further controlled. Using a fluorescent aptamer, we also show that short-lived RNA species are captured by the protein cage. This platform has potential as a model system for investigating virus assembly, as well as developing RNA regulation or sampling tools to augment biotechnology.
更新日期:2018-01-03

 

Some contents have been Reproduced with permission of the American Chemical Society.
Some contents have been Reproduced by permission of The Royal Society of Chemistry.
分享到
评论: 0
期刊列表
Wiley论文编辑服务,每月大奖送不停!
南京大学化学化工学院谢劲课题组招聘启事
广州大学水污染过程与控制研究团队招聘启事
华中师范大学第一届国际青年学者化学科学论坛
【问答】谍反应有哪些重要应用?
X-MOL近期新增451种期刊(20171216)
2017年中科院JCR分区化学大类列表
试剂库存管理
化合物查询
down
wechat
bug