当前位置: X-MOL 学术Polymer › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Combining advantages of homogeneous organocatalysis and heterogeneous catalysis with thermosensitive single-chain nanoparticles in a representative tetrahydropyranilation of alcohols
Polymer ( IF 4.6 ) Pub Date : 2017-12-26 , DOI: 10.1016/j.polymer.2017.12.058
Misha Rumyantsev , Sergey Rumyantsev

A significant scientific problem solved in this work is the development of effective polymer catalysts that allow carrying out organic reactions under homogeneous conditions with high rates and to remove catalyst from the system as a heterophase without the use of special treatment, thus combining the advantages of both homogeneous and heterogeneous catalysis. Kinetic experiments show high catalytic activity of the synthesized catalyst in homogeneous regime even at low dosage of the catalyst. Thus, it was demonstrated that tetrahydropyranilation of methanol was completed in nearly quantitative yield of the corresponding ether in 80 min at 60 °C with a dosage of the polymeric catalyst as low as 0.2 mol%. On the other hand anomalous decrease in the values of the effective rate constant was observed when the reaction was run at temperatures below the phase transition temperature. Kinetic data were used along with thermodynamic calculations to discuss the effect of the synthesized polymeric catalyst on the stabilization of the transition state. The high activity of the catalyst is complemented by its high sedimentation ability; thus, it usually takes a few minutes for the polymer to precipitate from the alcohol solution when cooled below the phase-transition temperature after the completion of the reaction. It was also revealed via dynamic light scattering that catalytic polymers adopt a thermodynamically stable conformation of the single-chain nanoparticles with average hydrodynamic radius in the range 2–2.5 nm.



中文翻译:

均相有机催化和非均相催化的优势与热敏性单链纳米粒子在醇的代表性四氢吡喃反应中的结合

这项工作中解决的一个重大科学问题是开发有效的聚合物催化剂,该催化剂可在均相条件下以高速率进行有机反应,并且无需使用特殊处理即可将催化剂作为多相从系统中除去,从而将两者的优点结合在一起均相和非均相催化。动力学实验表明,即使在催化剂用量低的情况下,合成催化剂在均相条件下仍具有较高的催化活性。因此,证明了在60℃下80分钟内,以低至0.2摩尔%的聚合催化剂的剂量,以几乎定量的产率得到了相应的醚,从而完成了甲醇的四氢吡喃基化。另一方面,当反应在低于相变温度的温度下进行时,观察到有效速率常数值的反常降低。动力学数据与热力学计算一起用于讨论合成聚合物催化剂对过渡态稳定的影响。催化剂的高活性与其高沉降能力相辅相成。因此,当反应完成后,当冷却至相变温度以下时,聚合物通常需要几分钟的时间从醇溶液中沉淀出来。通过动态光散射还发现,催化聚合物对单链纳米颗粒采用热力学稳定的构型,其平均流体力学半径在2–2.5 nm范围内。动力学数据与热力学计算一起用于讨论合成聚合物催化剂对过渡态稳定的影响。催化剂的高活性与其高沉降能力相辅相成。因此,当反应完成后,当冷却至相变温度以下时,聚合物通常需要几分钟的时间从醇溶液中沉淀出来。通过动态光散射还发现,催化聚合物对单链纳米颗粒采用热力学稳定的构型,其平均流体力学半径在2–2.5 nm范围内。动力学数据与热力学计算一起用于讨论合成聚合物催化剂对过渡态稳定的影响。催化剂的高活性与其高沉降能力相辅相成。因此,当反应完成后,当冷却至相变温度以下时,聚合物通常需要几分钟的时间从醇溶液中沉淀出来。通过动态光散射还发现,催化聚合物对单链纳米颗粒采用热力学稳定的构型,其平均流体力学半径在2–2.5 nm范围内。催化剂的高活性与其高沉降能力相辅相成。因此,在反应完成后,当冷却至相变温度以下时,聚合物通常需要几分钟的时间从醇溶液中沉淀出来。通过动态光散射还发现,催化聚合物对单链纳米颗粒采用热力学稳定的构型,其平均流体力学半径在2–2.5 nm范围内。催化剂的高活性与其高沉降能力相辅相成。因此,当反应完成后,当冷却至相变温度以下时,聚合物通常需要几分钟的时间从醇溶液中沉淀出来。通过动态光散射还发现,催化聚合物对单链纳米颗粒采用热力学稳定的构型,其平均流体力学半径在2–2.5 nm范围内。

更新日期:2017-12-26
down
wechat
bug