当前位置: X-MOL 学术Atmos. Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China
Atmospheric Environment ( IF 5 ) Pub Date : 2018-03-01 , DOI: 10.1016/j.atmosenv.2017.12.031
Rui Zhang , Xuesong Sun , Aijun Shi , Yuhu Huang , Jing Yan , Teng Nie , Xiao Yan , Xuan Li

Abstract Severe PM2.5 pollution was observed frequently in Beijing. We conducted highly time-resolved measurements of inorganic ions associated with PM2.5 at an urban site in Beijing from 10 February to 19 March, 2015. The average PM2.5 mass concentrations during the six haze episodes ranged from 113.0 μg/m3 to 182.6 μg/m3, which were more than 8 times higher than those observed in clean periods. The secondary inorganic species (NH4+, SO42− and NO3−) in PM2.5 sharply increased during the haze episodes, indicating more extensive formation of SO42− and NO3−. The sulfur oxidation ratios (SOR) and the nitrogen oxidation ratios (NOR) in haze episodes were higher than those in clean periods, which indicated that secondary transformation in haze episodes was more significant than those in clean periods. No correlations between SOR and the oxidants (O3 and HONO) and the temperature were found, whereas a high correlation between SOR and relative humidity (RH) was found in haze episodes, which implied that sulfate was mainly produced by the aqueous-phase oxidation of SO2 rather than the gas-phase conversion of SO2 to sulfate. The conversion of SO2 to SO42− was observed to be sensitive to changes in RH. Furthermore, the SOR sharply increased at RH > 60% with the highest value of 0.88 at RH around 80% during complicated pollution. NO2 played an important role in the rapid sulfate formation with high RH and NH3 neutralization conditions in haze episodes in Beijing. The impact of RH was less apparent for nitrate than for sulfate. Nitrate was found to be produced mainly by photochemical and heterogeneous reactions, while heterogeneous reactions had a greater influence on NOR at nighttime. The NO3−/SO42− ratio indicated that mobile sources contributed more to the formation of PM2.5 than stationary sources. The result suggested the need for control of vehicle emissions to reduce the high levels of NOx and nitrate and the severe PM2.5 pollution in Beijing.
更新日期:2018-03-01
down
wechat
bug