当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrochemical and Electrostatic Cleavage of Alkoxyamines
Journal of the American Chemical Society ( IF 15.0 ) Pub Date : 2018-01-08 , DOI: 10.1021/jacs.7b11628
Long Zhang 1, 2 , Eduardo Laborda 3 , Nadim Darwish 1 , Benjamin B. Noble 4 , Jason H. Tyrell 4 , Sandra Pluczyk 5 , Anton P. Le Brun 6 , Gordon G. Wallace 2 , Joaquin Gonzalez 3 , Michelle L. Coote 4 , Simone Ciampi 1
Affiliation  

Alkoxyamines are heat-labile molecules, widely used as an in situ source of nitroxides in polymer and materials sciences. Here we show that the one-electron oxidation of an alkoxyamine leads to a cation radical intermediate that even at room temperature rapidly fragments, releasing a nitroxide and carbocation. Digital simulations of experimental voltammetry and current-time transients suggest that the unimolecular decomposition which yields the "unmasked" nitroxide (TEMPO) is exceedingly rapid and irreversible. High-level quantum computations indicate that the collapse of the alkoxyamine cation radical is likely to yield a neutral nitroxide radical and a secondary phenylethyl cation. However, this fragmentation is predicted to be slow and energetically very unfavorable. To attain qualitative agreement between the experimental kinetics and computational modeling for this fragmentation step, the explicit electrostatic environment within the double layer must be accounted for. Single-molecule break-junction experiments in a scanning tunneling microscope using solvent of low dielectric (STM-BJ technique) corroborate the role played by electrostatic forces on the lysis of the alkoxyamine C-ON bond. This work highlights the electrostatic aspects played by charged species in a chemical step that follows an electrochemical reaction, defines the magnitude of this catalytic effect by looking at an independent electrical technique in non-electrolyte systems (STM-BJ), and suggests a redox on/off switch to guide the cleavage of alkoxyamines at an electrified interface.

中文翻译:

烷氧基胺的电化学和静电裂解

烷氧基胺是不耐热的分子,在聚合物和材料科学中广泛用作氮氧化物的原位来源。在这里,我们表明烷氧基胺的单电子氧化导致阳离子自由基中间体,即使在室温下也能迅速断裂,释放出氮氧化合物和碳正离子。实验伏安法和电流-时间瞬变的数字模拟表明,产生“未掩蔽”氮氧化合物 (TEMPO) 的单分子分解非常快速且不可逆。高级量子计算表明,烷氧基胺阳离子自由基的坍塌可能会产生中性氮氧自由基和二级苯乙基阳离子。然而,预计这种分裂是缓慢的,并且在能量上非常不利。为了在此碎裂步骤的实验动力学和计算模型之间获得定性一致,必须考虑双层内的显式静电环境。使用低介电常数溶剂(STM-BJ 技术)在扫描隧道显微镜中进行的单分子断裂结实验证实了静电力对烷氧基胺 C-ON 键裂解所起的作用。这项工作突出了带电物质在电化学反应后的化学步骤中所起的静电作用,通过研究非电解质系统 (STM-BJ) 中的独立电气技术来定义这种催化效应的大小,并建议对/off 开关以引导带电界面处烷氧基胺的裂解。必须考虑双层内的显式静电环境。使用低介电质溶剂(STM-BJ 技术)在扫描隧道显微镜中进行的单分子断裂结实验证实了静电力对烷氧基胺 C-ON 键裂解所起的作用。这项工作突出了带电物质在电化学反应后的化学步骤中所起的静电作用,通过研究非电解质系统 (STM-BJ) 中的独立电气技术来定义这种催化效应的大小,并建议对/off 开关以引导带电界面处烷氧基胺的裂解。必须考虑双层内的显式静电环境。使用低介电质溶剂(STM-BJ 技术)在扫描隧道显微镜中进行的单分子断裂结实验证实了静电力对烷氧基胺 C-ON 键裂解所起的作用。这项工作突出了带电物质在电化学反应后的化学步骤中所起的静电作用,通过研究非电解质系统 (STM-BJ) 中的独立电气技术来定义这种催化效应的大小,并建议对/off 开关以引导带电界面处烷氧基胺的裂解。使用低介电质溶剂(STM-BJ 技术)在扫描隧道显微镜中进行的单分子断裂结实验证实了静电力对烷氧基胺 C-ON 键裂解所起的作用。这项工作突出了带电物质在电化学反应后的化学步骤中所起的静电作用,通过研究非电解质系统 (STM-BJ) 中的独立电气技术来定义这种催化效应的大小,并建议对/off 开关以引导带电界面处烷氧基胺的裂解。使用低介电质溶剂(STM-BJ 技术)在扫描隧道显微镜中进行的单分子断裂结实验证实了静电力对烷氧基胺 C-ON 键裂解所起的作用。这项工作突出了带电物质在电化学反应后的化学步骤中所起的静电作用,通过研究非电解质系统 (STM-BJ) 中的独立电气技术来定义这种催化效应的大小,并建议对/off 开关以引导带电界面处烷氧基胺的裂解。
更新日期:2018-01-08
down
wechat
bug