当前位置: X-MOL 学术Soft Matter › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Relationship between transit time and mechanical properties of a cell through a stenosed microchannel†
Soft Matter ( IF 3.4 ) Pub Date : 2017-12-19 00:00:00 , DOI: 10.1039/c7sm01891f
Ting Ye 1, 2, 3 , Huixin Shi 1, 2, 3 , Nhan Phan-Thien 4, 5, 6 , Chwee Teck Lim 4, 5, 5, 6, 7 , Yu Li 1, 2, 3
Affiliation  

The changes in the mechanical properties of a cell are not only the cause of some diseases, but can also be a biomarker for some disease states. In recent times, microfluidic devices with built-in constrictions have been widely used to measure these changes. The transit time in such devices, defined as the time that a cell takes to pass through a constriction, has been found to be a crucial factor associated with the cell mechanical properties. Here, we use smoothed dissipative particle dynamics (SDPD), a particle-based numerical method, to explore the relationship between the transit time and mechanical properties of a cell. Three expressions of the transit time are developed from our simulation data, with respect to the stenosed size of constrictions, the shear modulus and bending modulus of cells, respectively. We show that a convergent constriction (the inlet is wider than the outlet), and a sharp-corner constriction (the constriction outlet is narrow) are better in identifying the differences in the transit time of cells. Moreover, the transit time increases and gradually approaches a constant as the shear modulus of cells increases, but increases first and then decreases as the bending modulus increases. These results suggest that the mechanical properties of cells can indeed be measured by analyzing their transit time, based on the recommended microfluidic device.

中文翻译:

通过狭窄的微通道的细胞的渡越时间与机械性能之间的关系

细胞机械性能的变化不仅是某些疾病的原因,而且还可能是某些疾病状态的生物标记。近年来,具有内置收缩的微流体装置已被广泛用于测量这些变化。已经发现,在这样的装置中的渡越时间是细胞通过颈缩所花费的时间,是与细胞机械性能相关的关键因素。在这里,我们使用平滑的耗散粒子动力学(SDPD),一种基于粒子的数值方法,来研究细胞的渡越时间与力学性能之间的关系。根据我们的模拟数据,分别得出了狭窄区域的狭窄大小,细胞的剪切模量和弯曲模量的三种渡越时间表达式。我们表明,收敛的收缩(入口比出口宽)和尖角的收缩(收缩出口很窄)在识别细胞通过时间上的差异方面更好。而且,渡越时间随着细胞的剪切模量的增加而逐渐增加并逐渐接近一个常数,但是随着弯曲模量的增加首先增加然后减小。这些结果表明,基于推荐的微流体装置,可以通过分析细胞的转运时间来确实测量细胞的机械性能。渡越时间随着细胞的剪切模量的增加而逐渐增加并逐渐接近一个常数,但是随着弯曲模量的增加先增加然后减少。这些结果表明,基于推荐的微流体装置,可以通过分析细胞的转运时间来确实测量细胞的机械性能。渡越时间随着细胞的剪切模量的增加而逐渐增加并逐渐接近一个常数,但是随着弯曲模量的增加先增加然后减少。这些结果表明,基于推荐的微流体装置,可以通过分析细胞的转运时间来确实测量细胞的机械性能。
更新日期:2017-12-19
down
wechat
bug