当前位置: X-MOL 学术Phys. Chem. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantitative biosensor detection by chemically exchanging hyperpolarized 129Xe†
Physical Chemistry Chemical Physics ( IF 3.3 ) Pub Date : 2017-12-19 00:00:00 , DOI: 10.1039/c7cp07051a
S. Korchak 1, 2, 3 , T. Riemer 3, 4, 5, 6, 7 , W. Kilian 1, 2, 3 , L. Mitschang 1, 2, 3
Affiliation  

Chemical sensors informing about their local environment are of widespread use for chemical analysis. A thorough understanding of the sensor signaling is fundamental to data analysis and interpretation, and a requirement for technological applications. Here, sensors explored for the recognition and display of biomolecular and cellular markers by magnetic resonance and composed of host molecules for xenon atoms are considered. These host–guest systems are analytically powerful and also function as contrast agents in imaging applications. Using nuclear spin hyperpolarization of 129Xe and chemical exchange saturation transfer the detection sensitivity is orders of magnitude enhanced in comparison to conventional 1H NMR. The sensor signaling reflects this rather complex genesis, furthering the mere qualitative interpretation of biosensing data; to harvest the potential of the approach, however, a detailed numerical account is desired. To this end, we introduce a comprehensive expression that maps the sensor detection quantitatively by integration of the hyperpolarization generation and relaxation with the host–xenon exchange dynamics. As demonstrated for the host molecule and well-established biosensor cryptophane-A, this model reveals a distinguished maximum in sensor signaling and exerts control over experimentation by dedicated adjustments of both the amount of xenon and the duration of the saturation transfer applied in a measurement, for example to capitalize on investigations at the detection limit. Furthermore, usage of the model for data analysis makes the quantification of the sensor concentration in the nanomolar range possible. The approach is readily applicable in investigations using cryptophane-A and is straightaway adaptable to other sensor designs for extension of the field of xenon based biosensing.

中文翻译:

通过化学交换超极化129 Xe 进行定量生物传感器检测

通知其本地环境的化学传感器已广泛用于化学分析。对传感器信号的透彻了解是数据分析和解释的基础,也是对技术应用的要求。在这里,考虑了探索用于通过磁共振识别和显示生物分子和细胞标记物的传感器,该传感器由氙原子的宿主分子组成。这些主宾系统具有强大的分析功能,并且在成像应用中还可以用作造影剂。与传统的1相比,使用129 Xe的核自旋超极化和化学交换饱和转移,检测灵敏度提高了几个数量级。1 H NMR。传感器信号反映了这种相当复杂的起源,进一步促进了对生物传感数据的定性解释。为了收获该方法的潜力,但是,需要详细的数值说明。为此,我们引入了一个综合表达式,该表达式通过将超极化产生和弛豫与宿主-氙交换动力学相集成来定量映射传感器检测。正如针对宿主分子和成熟的生物传感器隐蛋白-A所证明的那样,该模型揭示了传感器信号的显着最大值,并通过专门调整氙的量和在测量中应用的饱和转移的持续时间来对实验进行控制,例如,利用侦查极限处的调查。此外,利用该模型进行数据分析,可以对纳摩尔范围内的传感器浓度进行量化。该方法很容易适用于使用隐蛋白A的研究,并且可以直接适用于其他传感器设计,以扩展基于氙的生物传感领域。
更新日期:2017-12-19
down
wechat
bug