当前位置: X-MOL 学术J. Phys. Chem. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
(H, Li)Br and LiOH Solvation Bonding Dynamics: Molecular Nonbond Interactions and Solute Extraordinary Capabilities
The Journal of Physical Chemistry B ( IF 3.3 ) Pub Date : 2018-01-08 00:00:00 , DOI: 10.1021/acs.jpcb.7b09269
Chang Q. Sun 1, 2 , Jiasheng Chen 3 , Yinyan Gong 4 , Xi Zhang 5 , Yongli Huang 3
Affiliation  

We resolved the O:H–O bond transition from the mode of ordinary water to its hydration in terms of its phonon stiffness (vibration frequency shift Δω), order of fluctuation (line width), and number fraction (phonon abundance), fx(C) = Nhyd/Ntotal. The fx(C) follows fH(C) = 0, fLi(C) ∝ fOH(C) ∝ C, and fBr(C) ∝ 1 – exp(−C/C0) toward saturation with C being the solute concentration. The invariant dfx(C)/dC suggests that the solute forms a constantly sized hydration droplet without responding to interference of other ions because its hydrating H2O dipoles fully screen its electric field. However, the number inadequacy of the highly ordered hydration H2O dipoles partially screens the large Br. The Br then interacts repulsively with other Br anions, which weakens its electric field and the fBr(C) approaches saturation at higher solute concentration. The consistency in the concentration trend of the fLiBr(C), the Jones–Dole viscosity η(C), and the surface stress of LiBr solution clarifies their common origin of ionic polarization. The resultant energy of the solvent H–O exothermic elongation by O: ⇔ :O repulsion and the solute H–O endothermic contraction by bond-order deficiency heats up the LiOH solution. An estimation of at least 0.15 eV (160% of the O:H cohesive energy of 0.1 eV) suggests that the H–O elongation is the main source heating up the solution, while the molecular motion, structure fluctuation, or even evaporation dissipates energy caped at 0.1 eV.

中文翻译:

(H,Li)Br和LiOH溶剂键合动力学:分子非键相互作用和溶质非凡能力

我们根据声子刚度(振动频移Δω),波动阶次(线宽)和数量分数(声子丰度)f x解析了从普通水模式到水合作用的O:H-O键跃迁。(C)= N hyd / N总数。所述˚F XÇ)如下˚F ħC ^)= 0,˚FÇ)α ˚F OHÇ)α Ç,和˚Fc ^)α1 - EXP( - ç /C 0)趋于饱和,其中C为溶质浓度。不变性df xC)/ d C表示溶质形成了一个恒定大小的水合液滴,而不会响应其他离子的干扰,因为其水合H 2 O偶极子完全屏蔽了其电场。然而,高度有序的水合小时数不足2 ö偶极子部分屏蔽了大溴- 。该溴-然后与其他溴相斥相互作用-阴离子,这削弱了它的电场和˚FÇ)在较高的溶质浓度下接近饱和。f LiBrC),Jones–Dole粘度η(C)和LiBr溶液的表面应力在浓度趋势中的一致性阐明了它们共同的离子极化起因。溶剂H–O因O:⇔:O排斥而放热而产生的能量和溶质H–O因键序缺陷而吸热收缩所产生的能量会加热LiOH溶液。估计至少为0.15 eV(0.1 eV的O:H内聚能的160%)表明,H–O伸长是加热溶液的主要来源,而分子运动,结构波动甚至蒸发会耗散能量上限为0.1 eV。
更新日期:2018-01-08
down
wechat
bug