当前位置: X-MOL 学术Electroanalysis › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enzyme Catalysis Induced Polymer Growth in Nanochannels: A New Approach to Regulate Ion Transport and to Study Enzyme Kinetics in Nanospace
Electroanalysis ( IF 3 ) Pub Date : 2017-12-18 , DOI: 10.1002/elan.201700703
Huang Dai 1 , Yuqing Li 1 , Yingchun Fu 1 , Yanbin Li 1, 2
Affiliation  

Method that could regulate the ion transport in nanochannel in an efficient and rapid manner is still a challenge. Here, we introduced enzyme‐catalysis‐induced polymer growth in nanochannels to develop a new method to regulate the ion transport and evaluate the enzyme catalysis kinetics in nano‐space. As a model enzyme, Horseradish peroxidase (HRP) was immobilized in the nanochannels through a volume‐controlled‐drying method. In the presence of H2O2, HRP catalyzed o‐phenylenediamine (o‐PD) to trigger its polymer growth, in turn blocked the ion transport and led to the decrease of the ion current. Taking advantages of the high efficiency of enzyme catalysis and the nano‐confinement of nanochannels, the system readily achieved blocking ratios of ion current even reaching 99.6 % of the initial. Based on above concept, we developed a new method to evaluate the enzyme catalysis kinetics in nano‐confined space. By comparing with those in free state in solution and absorbed on planar surface, HRP confined in nanochannels presented similar apparent Michaelis constant (Km) values for the substrate H2O2 but much higher Km values for the substrate o‐PD, due to the steric hindrance and diffusion suppression. The enzyme‐catalysis‐induced polymerization in nanochannels might lead to new concept for the nano‐blocking/switching and provide a new platform for single molecule analysis and detection.

中文翻译:

酶催化诱导聚合物在纳米通道中的生长:调节离子迁移和研究纳米空间中酶动力学的新方法

能够以有效和快速的方式调节纳米通道中离子迁移的方法仍然是一个挑战。在这里,我们介绍了酶催化在纳米通道中诱导的聚合物生长,以开发一种新的方法来调节离子迁移并评估纳米空间中的酶催化动力学。作为模型酶,辣根过氧化物酶(HRP)通过体积控制干燥法固定在纳米通道中。在H 2 O 2存在下,HRP催化苯二胺(o‐PD)触发其聚合物生长,进而阻止了离子传输,并导致离子电流降低。利用酶催化的高效率和纳米通道的纳米约束,该系统可以轻松实现离子电流的阻断率,甚至达到初始值的99.6%。基于上述概念,我们开发了一种评估纳米密闭空间中酶催化动力学的新方法。通过与那些在溶液中游离状态和吸收平坦表面上相比,HRP在纳米通道限于呈现的类似表观米氏常数(ķ为底物H)值2 ö 2但高得多的ķ值基板Ò-PD,由于空间位阻和扩散抑制。纳米通道中酶催化诱导的聚合反应可能会导致新的纳米封闭/转换概念,并为单分子分析和检测提供新平台。
更新日期:2017-12-18
down
wechat
bug