当前位置: X-MOL 学术Prog. Energy Combust. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A review of cavity-based trapped vortex, ultra-compact, high-g, inter-turbine combustors
Progress in Energy and Combustion Science ( IF 29.5 ) Pub Date : 2018-05-01 , DOI: 10.1016/j.pecs.2017.12.001
Dan Zhao , Ephraim Gutmark , Philip de Goey

Abstract Trapped vortex combustor (TVC) is different from conventional swirl-stabilized combustors. It takes advantages of a cavity to stabilize the flame. When the cavity size of a TVC is well designed, a large rotating vortex can be formed in the cavity. The vortex cannot shed out the cavity and is thus named a “locked” or “stable” vortex. One of the main challenges for TVC design is fuel injection. Typically, fuel can be injected directly into the cavity or from the diffuser upstream. Injecting from the diffuser leads to the fuel being mixed with the air before it enters the combustor. When the fuel is injected directly into the cavity, it is desirable to supply the fuel in such way that the locked vortex in the cavity is reinforced. Furthermore, the fuel-air mixing in the cavity will be promoted, as the bypass air is directly added into the cavity. Since the recirculation zone anchored in the cavity is not exposed to the main incoming flow, stable combustion is achieved, even in the presence of a high speed main flow as typically expected in Ramjets and Scramjets. A well-designed trapped vortex combustor (TVC) enables a better fuel-air mixing, a better stabilized flame, lower emission, ultra-compact and high efficient combustion to be achievable. As a promising combustion concept, intensive scientific research has been conducted on TVC in the application areas of aerospace propulsion, power generation and waste incineration. In this work, we will firstly introduce the fundamental concepts, the development and evolution history of TVCs. The combustion, aerodynamics, and aeroacoustics features of trapped vortex combustion are then described. This includes reviewing and discussing the cavity flow/aerodynamics, fuel-air injection and mixing, trapped vortex combustion, emission and combustion of alternative fuels, and aeroacoustics characteristics. The ‘spin-off’ application of trapped vortex combustion concept for the design of ultra-compact and high-g combustors, inter-turbine burners, in-Situ and flameless TVC reheat combustors are then reviewed and discussed. Various practical applications of trapped vortex combustion concept in gas turbines, ramjets, scramjets and waste incinerators are discussed and summarized. Finally, the challenges and future directions of the design and implementation of TVCs are provided.

中文翻译:

基于腔的驻涡、超紧凑、高g、涡轮间燃烧器的综述

摘要 困涡燃烧器(TVC)不同于传统的涡流稳定燃烧器。它利用空腔来稳定火焰。当TVC的腔体尺寸设计良好时,腔体中可以形成一个大的旋转涡流。涡流不能脱离空腔,因此称为“锁定”或“稳定”涡流。TVC 设计的主要挑战之一是燃油喷射。通常,燃料可以直接注入空腔或从扩散器上游注入。从扩散器喷射导致燃料在进入燃烧器之前与空气混合。当燃料直接喷射到空腔中时,希望以增强空腔中的锁定涡流的方式供应燃料。进而促进空腔内的油气混合,因为旁通空气直接添加到型腔中。由于锚定在空腔中的再循环区不暴露于主要进入流中,因此即使在存在冲压喷气发动机和超燃冲压发动机中通常预期的高速主流的情况下,也能实现稳定燃烧。精心设计的驻涡燃烧室 (TVC) 能够实现更好的燃料空气混合、更好的稳定火焰、更低的排放、超紧凑和高效燃烧。作为一种很有前景的燃烧概念,TVC 在航空航天推进、发电和垃圾焚烧等应用领域得到了深入的科学研究。在这项工作中,我们将首先介绍 TVC 的基本概念、发展和演变历史。然后描述了驻涡燃烧的燃烧、空气动力学和气动声学特性。这包括审查和讨论腔体流动/空气动力学、燃料-空气喷射和混合、困涡燃烧、替代燃料的排放和燃烧以及气动声学特性。然后回顾和讨论了困涡燃烧概念在超紧凑和高 g 燃烧器、涡轮间燃烧器、原位和无焰 TVC 再热燃烧器设计中的“衍生”应用。讨论和总结了困涡燃烧概念在燃气轮机、冲压发动机、超燃冲压发动机和垃圾焚烧炉中的各种实际应用。最后,提供了 TVC 设计和实现的挑战和未来方向。和气动声学特性。然后回顾和讨论了困涡燃烧概念在超紧凑和高 g 燃烧器、涡轮间燃烧器、原位和无焰 TVC 再热燃烧器设计中的“衍生”应用。讨论和总结了困涡燃烧概念在燃气轮机、冲压发动机、超燃冲压发动机和垃圾焚烧炉中的各种实际应用。最后,提供了 TVC 设计和实现的挑战和未来方向。和气动声学特性。然后回顾和讨论了困涡燃烧概念在超紧凑和高 g 燃烧器、涡轮间燃烧器、原位和无焰 TVC 再热燃烧器设计中的“衍生”应用。讨论和总结了困涡燃烧概念在燃气轮机、冲压发动机、超燃冲压发动机和垃圾焚烧炉中的各种实际应用。最后,提供了 TVC 设计和实现的挑战和未来方向。讨论和总结了超燃冲压发动机和垃圾焚烧炉。最后,提供了 TVC 设计和实现的挑战和未来方向。讨论和总结了超燃冲压发动机和垃圾焚烧炉。最后,提供了 TVC 设计和实现的挑战和未来方向。
更新日期:2018-05-01
down
wechat
bug