当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes – a critical review
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2017-12-14 00:00:00 , DOI: 10.1039/c7ee03122j
Chun Zhan 1, 2, 3, 4 , Tianpin Wu 2, 3, 4, 5, 6 , Jun Lu 1, 2, 3, 4 , Khalil Amine 1, 2, 3, 4
Affiliation  

Unlike the revolutionary advances in the anodes of lithium-ion batteries from Li intercalation materials to Li alloy and/or conversion reaction materials, the development of the cathode is still dominated by the Li intercalation compounds. Transition metal ions are essential in these cathodes as the rapid redox reaction centers, and one of the biggest challenges for the TM-based cathodes is the capacity and power fading especially at an elevated temperature, which is directly associated with the dissolution–migration–deposition (DMD) process of TMs from the cathode materials. This process not only alters the surface structure of the cathode materials, but more importantly, changes the SEI composition at the anode side. There is no doubt that the TM-DMD issue should be addressed thoroughly to unlock the potential of these compounds to enable a prolonged battery lifetime. This review article mainly focuses on research activities with regard to the DMD process in TM-based cathode materials. In the first four sections, we choose Mn-based cathodes as an example to discuss how Mn DMD relates to the capacity fade of the cell, and what possible approaches might suppress the DMD process by modification of the electrode or electrolyte. In the fifth section, we discuss the TM DMD process in Ni-, Co-, Fe- and V-containing cathode materials. This article reviews the frontier electrochemical research on TM-based cathodes and summarizes the progress and challenges, thereby helping to advance future R&D of LIBs.

中文翻译:

锂离子电池中过渡金属离子的溶解,迁移和沉积,以锰基阴极为例–一项重要的综述

与锂离子电池阳极从锂嵌入材料到锂合金和/或转化反应材料的革命性进展不同,阴极的发展仍主要由锂嵌入化合物主导。过渡金属离子在这些阴极中是快速的氧化还原反应中心,必不可少,而基于TM的阴极最大的挑战之一是容量和功率衰减,尤其是在高温下,其衰减和迁移,沉积直接相关。阴极材料的TM的(DMD)处理。该过程不仅改变了阴极材料的表面结构,而且更重要的是改变了阳极侧的SEI组成。毫无疑问,应彻底解决TM-DMD问题,以释放这些化合物的潜力,以延长电池寿命。这篇综述文章主要关注与基于TM的阴极材料中DMD工艺有关的研究活动。在前四个部分中,我们以Mn基阴极为例来讨论Mn DMD与电池容量衰减之间的关系,以及哪些可能的方法可能会通过修饰电极或电解质来抑制DMD过程。在第五部分中,我们讨论了在含Ni,Co,Fe和V的阴极材料中的TM DMD工艺。本文回顾了基于TM的阴极的前沿电化学研究,并总结了进展和面临的挑战,从而有助于推动LIB的未来研发。这篇综述文章主要关注与基于TM的阴极材料中DMD工艺有关的研究活动。在前四个部分中,我们以Mn基阴极为例来讨论Mn DMD与电池容量衰减之间的关系,以及哪些可能的方法可能会通过修饰电极或电解质来抑制DMD过程。在第五部分中,我们讨论了在含Ni,Co,Fe和V的阴极材料中的TM DMD工艺。本文回顾了基于TM的阴极的前沿电化学研究,并总结了进展和面临的挑战,从而有助于推动LIB的未来研发。这篇综述文章主要关注与基于TM的阴极材料中DMD工艺有关的研究活动。在前四个部分中,我们以Mn基阴极为例来讨论Mn DMD与电池容量衰减之间的关系,以及哪些可能的方法可能会通过修饰电极或电解质来抑制DMD过程。在第五部分中,我们讨论了在含Ni,Co,Fe和V的阴极材料中的TM DMD工艺。本文回顾了基于TM的阴极的前沿电化学研究,并总结了进展和面临的挑战,从而有助于推动LIB的未来研发。以及什么可能的方法可能会通过修改电极或电解质来抑制DMD过程。在第五部分中,我们讨论了在含Ni,Co,Fe和V的阴极材料中的TM DMD工艺。本文回顾了基于TM的阴极的前沿电化学研究,并总结了进展和面临的挑战,从而有助于推动LIB的未来研发。以及什么可能的方法可能会通过修改电极或电解质来抑制DMD过程。在第五部分中,我们讨论了在含Ni,Co,Fe和V的阴极材料中的TM DMD工艺。本文回顾了基于TM的阴极的前沿电化学研究,并总结了进展和面临的挑战,从而有助于推动LIB的未来研发。
更新日期:2017-12-14
down
wechat
bug