当前位置: X-MOL 学术Ultrason. Sonochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Simulation of Single Bubble Dynamics under Acoustic Travelling Waves
Ultrasonics Sonochemistry ( IF 8.4 ) Pub Date : 2017-12-14 , DOI: 10.1016/j.ultsonch.2017.12.021
Xiaojian Ma , Biao Huang , Yikai Li , Qing Chang , Sicong Qiu , Zheng Su , Xiaoying Fu , Guoyu Wang

The objective of this paper is to apply CLSVOF method to investigate the single bubble dynamics in acoustic travelling waves. The Naiver-Stokes equation considering the acoustic radiation force is proposed and validated to capture the bubble behaviors. And the CLSVOF method, which can capture the continuous geometric properties and satisfies mass conservation, is applied in present work. Firstly, the regime map, depending on the dimensionless acoustic pressure amplitude and acoustic wave number, is constructed to present different bubble behaviors. Then, the time evolution of the bubble oscillation is investigated and analyzed. Finally, the effect of the direction and the damping coefficient of acoustic wave propagation on the bubble behavior are also considered. The numerical results show that the bubble presents distinct oscillation types in acoustic travelling waves, namely, volume oscillation, shape oscillation, and splitting oscillation. For the splitting oscillation, the formation of jet, splitting of bubble, and the rebound of sub-bubbles may lead to substantial increase in pressure fluctuations on the boundary. For the shape oscillation, the nodes and antinodes of the acoustic pressure wave contribute to the formation of the “cross shape” of the bubble. It should be noted that the direction of the bubble translation and bubble jet are always towards the direction of wave propagation. In addition, the damping coefficient causes bubble in shape oscillation to be of asymmetry in shape and inequality in size, and delays the splitting process.



中文翻译:

声传播波作用下单泡动力学的数值模拟

本文的目的是应用CLSVOF方法研究声传播波中的单泡动力学。提出并考虑了声辐射力的Naiver-Stokes方程,并进行了验证以捕获气泡行为。在目前的工作中,采用了CLSVOF方法,该方法可以捕获连续的几何特性并满足质量守恒。首先,根据无量纲声压幅度和声波数构造状态图,以呈现不同的气泡行为。然后,对气泡振荡的时间演化进行了研究和分析。最后,还考虑了声波传播的方向和阻尼系数对气泡行为的影响。数值结果表明,气泡在声传播波中表现出明显的振荡类型,即体积振荡,形状振荡和分裂振荡。对于分裂振荡,射流的形成,气泡的分裂以及子气泡的回弹可能导致边界上压力波动的显着增加。对于形状振荡,声压波的波节和波腹有助于形成气泡的“十字形”。应当注意,气泡平移和气泡喷射的方向总是朝着波传播的方向。另外,阻尼系数导致形状振荡的气泡形状不对称且尺寸不均等,并且延迟了分裂过程。形状振荡和分裂振荡。对于分裂振荡,射流的形成,气泡的分裂以及子气泡的回弹可能导致边界上压力波动的显着增加。对于形状振荡,声压波的波节和波腹有助于形成气泡的“十字形”。应该注意的是,气泡平移和气泡喷射的方向总是朝着波传播的方向。另外,阻尼系数导致形状振荡的气泡形状不对称且尺寸不均等,并且延迟了分裂过程。形状振荡和分裂振荡。对于分裂振荡,射流的形成,气泡的分裂以及子气泡的回弹可能导致边界上压力波动的显着增加。对于形状振荡,声压波的波节和波腹有助于形成气泡的“十字形”。应当注意,气泡平移和气泡喷射的方向总是朝着波传播的方向。另外,阻尼系数导致形状振荡的气泡形状不对称且尺寸不均等,并且延迟了分裂过程。子气泡的反弹可能会导致边界压力波动的大幅增加。对于形状振荡,声压波的波节和波腹有助于形成气泡的“十字形”。应当注意,气泡平移和气泡喷射的方向总是朝着波传播的方向。另外,阻尼系数导致形状振荡的气泡形状不对称且尺寸不均等,并且延迟了分裂过程。子气泡的反弹可能会导致边界压力波动的大幅增加。对于形状振荡,声压波的波节和波腹有助于形成气泡的“十字形”。应当注意,气泡平移和气泡喷射的方向总是朝着波传播的方向。另外,阻尼系数导致形状振荡的气泡形状不对称且尺寸不均等,并且延迟了分裂过程。

更新日期:2017-12-15
down
wechat
bug