当前位置: X-MOL 学术Neurochem. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Trophic modulation of gamma oscillations: The key role of processing protease for Neuregulin-1 and BDNF precursors
Neurochemistry international ( IF 4.2 ) Pub Date : 2017-12-09 , DOI: 10.1016/j.neuint.2017.12.002
Hideki Tamura , Sadao Shiosaka , Shota Morikawa

Gamma oscillations within the cerebral cortex and hippocampus are associated with cognitive processes, including attention, sensory perception, and memory formation; a deficit in gamma regulation is a common symptom of neurologic and psychiatric disorders. Accumulating evidence has suggested that gamma oscillations result from the synchronized activity of cell assemblies coordinated mainly by parvalbumin-positive inhibitory interneurons. The modulator molecules for parvalbumin-positive interneurons are major research targets and have the potential to control the specific oscillatory rhythm and behavior originating from neural coordination. Neuregulin-1 and brain-derived neurotrophic factor have been focused on as synaptic trophic factors that are associated with gamma oscillations. Synaptic activity converts precursor trophic factors into their biologically active forms by proteolytic cleavage, which could, in turn, modulate cell excitability and synaptic plasticity through each receptor's signaling. From these findings, the processing of trophic factors by proteases in a synaptic microenvironment might involve gamma oscillations during cognition. Here, we review the trophic modulation of gamma oscillations through extracellular proteolysis and its implications in neuronal diseases.



中文翻译:

γ振荡的营养调节:神经调节蛋白1和BDNF前体的加工蛋白酶的关键作用。

大脑皮层和海马内的伽马振荡与认知过程有关,包括注意力,感觉知觉和记忆形成。γ调节不足是神经系统疾病和精神疾病的常见症状。越来越多的证据表明,γ振荡是由主要由小白蛋白阳性抑制性中间神经元协调的细胞装配的同步活动引起的。小白蛋白阳性中间神经元的调节剂分子是主要的研究目标,并且有可能控制特定的振荡节律和源自神经协调的行为。Neuregulin-1和脑源性神经营养因子已被重点研究为与伽马振荡相关的突触营养因子。突触活性通过蛋白水解裂解将前体营养因子转化为其生物学活性形式,进而可以通过每个受体的信号传导调节细胞的兴奋性和突触可塑性。根据这些发现,在突触微环境中蛋白酶对营养因子的加工可能涉及认知过程中的伽马振荡。在这里,我们审查通过细胞外蛋白水解的伽马振荡的营养调节及其对神经元疾病的影响。

更新日期:2017-12-09
down
wechat
bug