当前位置: X-MOL 学术Neurochem. Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mitochondria/metabolic reprogramming in the formation of neurons from peripheral cells: Cause or consequence and the implications to their utility
Neurochemistry international ( IF 4.2 ) Pub Date : 2017-06-13 , DOI: 10.1016/j.neuint.2017.06.007
Gary E. Gibson , Ankita Thakkar

The induction of pluripotent stem cells (iPSC) from differentiated cells such as fibroblasts and their subsequent conversion to neural progenitor cells (NPC) and finally to neurons is intriguing scientifically, and its potential to medicine is nearly infinite, but unrealized. A better understanding of the changes at each step of the transformation will enable investigators to better model neurological disease. Each step of conversion from a differentiated cell to an iPSC to a NPC to neurons requires large changes in glycolysis including aerobic glycolysis, the pentose shunt, the tricarboxylic acid cycle, the electron transport chain and in the production of reactive oxygen species (ROS). These mitochondrial/metabolic changes are required and their manipulation modifies conversions. These same mitochondrial/metabolic processes are altered in common neurological diseases so that factors related to the disease may alter the cellular transformation at each step including the final phenotype. A lack of understanding of these interactions could compromise the validity of the disease comparisons in iPSC derived neurons. Both the complexity and potential of iPSC derived cells for understanding and treating disease remain great.



中文翻译:

从周围细胞形成神经元的线粒体/代谢重编程:原因或后果及其对它们效用的影响

从分化细胞(如成纤维细胞)诱导多能干细胞(iPSC),然后将其转化为神经祖细胞(NPC),最后转化为神经元,这在科学上引起了人们的兴趣,其在医学上的潜力几乎是无限的,但尚未实现。更好地了解转换过程中每个步骤的变化,将使研究人员能够更好地模拟神经系统疾病。从分化细胞到iPSC到从NPC到神经元的每个转换步骤都需要在糖酵解方面进行大的改变,包括有氧糖酵解,戊糖分流,三羧酸循环,电子传输链以及活性氧(ROS)的产生。这些线粒体/代谢变化是必需的,它们的操纵可改变转化。在常见的神经系统疾病中,这些相同的线粒体/新陈代谢过程也发生了变化,因此与疾病相关的因素可能会改变包括最终表型在内的每个步骤的细胞转化。缺乏对这些相互作用的了解可能会损害iPSC衍生神经元中疾病比较的有效性。iPSC衍生细胞在理解和治疗疾病方面的复杂性和潜力仍然很大。

更新日期:2017-06-13
down
wechat
bug