当前位置: X-MOL 学术Fuel Process. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Relevance of plant design on CLC process performance using a Cu-based oxygen carrier
Fuel Processing Technology ( IF 7.5 ) Pub Date : 2017-11-20 , DOI: 10.1016/j.fuproc.2017.09.015
Alberto Abad , Pilar Gayán , Francisco García-Labiano , Luis F. de Diego , Juan Adánez

Previously validated mathematical CLC models were used to simulate the process performance of CLC methane combustion using an impregnated Cu-based material and to analyse the effect of the fuel reactor design; being either a bubbling fluidized bed or a circulating fluidized bed. The CLC models considered both the fluid dynamic of the fluidized beds at the specific regime and the corresponding kinetics of oxygen carrier reduction. From the model outputs, the performance of the different systems was assessed by calculating the methane conversion in the fuel reactor. Main results highlights that the selection of a suitable particle size of the oxygen carrier and cross section area are key factors to achieve complete combustion with low solids inventory in the fuel reactor. In addition, the growing of bubbles should be limited in order to achieve high CH4 conversion with low solids inventory values, mainly in the bubbling regime with low cross section areas. Complete combustion was predicted with solids inventory in the fuel reactor of 250 kg/MWth (1 m2/MW and particle size of 0.25 mm) or 125 kg/MWth (0.2 m2/MW and a particle size of 0.15 mm) in the bubbling and turbulent regime, respectively. Considering the pressure drop related to these conditions, conclusions for the optimization design of a CLC unit using the Cu-based oxygen carrier are drawn based on the results of the modelling and simulation.



中文翻译:

使用基于铜的氧气载体的工厂设计与CLC工艺性能的相关性

先前已验证的数学CLC模型用于模拟使用浸渍的铜基材料进行CLC甲烷燃烧的过程性能,并分析燃料反应堆设计的效果;是鼓泡流化床或循环流化床。CLC模型既考虑了特定条件下流化床的流体动力学,也考虑了氧载体还原的相应动力学。从模型输出中,通过计算燃料反应器中的甲烷转化率来评估不同系统的性能。主要结果表明,选择合适的氧气载体粒径和横截面积是在燃料反应堆中以低固体存量实现完全燃烧的关键因素。此外,4固体物库存值低的转换,主要是在横截面积低的鼓泡状态下进行。预测完全燃烧,燃料反应堆中的固体存量为250 kg / MW th(1 m 2 / MW,粒径为0.25 mm)或125 kg / MW th(0.2 m 2 / MW,粒径为0.15 mm)在起泡和动荡的政权分别。考虑到与这些条件有关的压降,基于建模和仿真的结果,得出了使用铜基氧气载体的CLC装置的优化设计结论。

更新日期:2017-11-20
down
wechat
bug