当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Properties and Chemical Modifications of Lignin: Towards Lignin-Based Nanomaterials for Biomedical Applications
Progress in Materials Science ( IF 37.4 ) Pub Date : 2018-04-01 , DOI: 10.1016/j.pmatsci.2017.12.001
Patrícia Figueiredo , Kalle Lintinen , Jouni T. Hirvonen , Mauri A. Kostiainen , Hélder A. Santos

Abstract Biorenewable polymers have emerged as an attractive alternative to conventional metallic and organic materials for a variety of different applications. This is mainly because of their biocompatibility, biodegradability and low cost of production. Lignocellulosic biomass is the most promising renewable carbon-containing source on Earth. Depending on the origin and species of the biomass, lignin consists of 20–35% of the lignocellulosic biomass. After it has been extracted, lignin can be modified through diverse chemical reactions. There are different categories of chemical modifications, such as lignin depolymerization or fragmentation, modification by synthesizing new chemically active sites, chemical modification of the hydroxyl groups, and the production of lignin graft copolymers. Lignin can be used for different industrial and biomedical applications, including biofuels, chemicals and polymers, and the development of nanomaterials for drug delivery but these uses depend on the source, chemical modifications and physicochemical properties. We provide an overview on the composition and properties, extraction methods and chemical modifications of lignin in this review. Furthermore, we describe different preparation methods for lignin-based nanomaterials with antioxidant UV-absorbing and antimicrobial properties that can be used as reinforcing agents in nanocomposites, in drug delivery and gene delivery vehicles for biomedical applications.

中文翻译:

木质素的性质和化学改性:面向生物医学应用的基于木质素的纳米材料

摘要 生物可再生聚合物已成为用于各种不同应用的传统金属和有机材料的有吸引力的替代品。这主要是因为它们的生物相容性、生物降解性和生产成本低。木质纤维素生物质是地球上最有前途的可再生含碳来源。根据生物质的来源和种类,木质素占木质纤维素生物质的 20-35%。提取后,木质素可以通过多种化学反应进行改性。有不同类别的化学改性,例如木质素解聚或断裂、通过合成新的化学活性位点进行改性、羟基的化学改性以及木质素接枝共聚物的生产。木质素可用于不同的工业和生物医学应用,包括生物燃料、化学品和聚合物,以及用于药物输送的纳米材料的开发,但这些用途取决于来源、化学修饰和物理化学特性。我们在这篇综述中概述了木质素的组成和性质、提取方法和化学改性。此外,我们描述了具有抗氧化紫外线吸收和抗菌特性的木质素基纳米材料的不同制备方法,这些材料可用作纳米复合材料、药物递送和生物医学应用的基因递送载体中的增强剂。化学修饰和物理化学性质。我们在这篇综述中概述了木质素的组成和性质、提取方法和化学改性。此外,我们描述了具有抗氧化紫外线吸收和抗菌特性的木质素基纳米材料的不同制备方法,这些材料可用作纳米复合材料、药物递送和生物医学应用的基因递送载体中的增强剂。化学修饰和物理化学性质。我们在这篇综述中概述了木质素的组成和性质、提取方法和化学改性。此外,我们描述了具有抗氧化紫外线吸收和抗菌特性的木质素基纳米材料的不同制备方法,这些材料可用作纳米复合材料、药物递送和生物医学应用的基因递送载体中的增强剂。
更新日期:2018-04-01
down
wechat
bug