当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tackling the Challenges of Dynamic Experiments Using Liquid-Cell Transmission Electron Microscopy
Accounts of Chemical Research ( IF 18.3 ) Pub Date : 2017-12-11 00:00:00 , DOI: 10.1021/acs.accounts.7b00331
Lucas R. Parent 1 , Evangelos Bakalis 2 , Maria Proetto 1, 3 , Yiwen Li 1, 3 , Chiwoo Park 4 , Francesco Zerbetto 2 , Nathan C. Gianneschi 1
Affiliation  

Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques, confocal microscopy, and fluorescence super-resolution microscopy in biology, and most recently aberration-corrected, cryogenic, and ultrafast (4D) electron microscopy, X-ray microscopy, and scanning probe microscopy in nanoscience. Through these developments, our perception and understanding of the physical nature of matter at length-scales beyond ordinary perception have been fundamentally transformed. Despite this progression in microscopy, techniques for observing nanoscale chemical processes and solvated/hydrated systems are limited, as the necessary spatial and temporal resolution presents significant technical challenges. However, the standard reliance on indirect or bulk phase characterization of nanoscale samples in liquids is undergoing a shift in recent times with the realization (Williamson et al. Nat. Mater. 2003, 2, 532−536) of liquid-cell (scanning) transmission electron microscopy, LC(S)TEM, where picoliters of solution are hermetically sealed between electron-transparent “windows,” which can be directly imaged or videoed at the nanoscale using conventional transmission electron microscopes. This Account seeks to open a discussion on the topic of standardizing strategies for conducting imaging experiments with a view to characterizing dynamics and motion of nanoscale materials. This is a challenge that could be described by critics and proponents alike, as analogous to doing chemistry in a lightning storm; where the nature of the solution, the nanomaterial, and the dynamic behaviors are all potentially subject to artifactual influence by the very act of our observation.

中文翻译:

使用液池透射电子显微镜应对动态实验的挑战

科学和工程学的革命经常源于新的,强大的表征或成像技术的发展和广泛采用。从天文学的第一批玻璃透镜和望远镜开始,到生物学中的可见光显微镜,染色技术,共焦显微镜和荧光超分辨率显微镜的发展,以及最近的像差校正,低温和超快(4D)电子显微镜,X射线显微镜和扫描探针显微镜在纳米科学中。通过这些发展,我们从根本上改变了人们对物质物理性质的理解和理解,而这种理解超出了人们的理解范围。尽管显微镜技术取得了进步,但用于观察纳米级化学过程和溶剂化/水合体系的技术仍然受到限制,因为必要的时空分辨率提出了重大的技术挑战。然而,随着对纳米尺度样品的间接或本体相表征的标准依赖,近年来随着这种认识的实现而发生了变化(Williamson et al。纳特 母校20032(532-536)的液池(扫描)透射电子显微镜(LC(S)TEM),其中微微升溶液被密封在电子透明的“窗口”之间,可以使用常规透射方法在纳米级直接成像或录像电子显微镜。该帐户旨在就进行成像实验的标准化策略这一主题展开讨论,以表征纳米级材料的动力学和运动。评论家和支持者都可以说这是一个挑战,就像在雷雨中进行化学反应一样。溶液的性质,纳米材料和动力学行为都可能由于我们观察的行为而受到人为因素的影响。
更新日期:2017-12-11
down
wechat
bug