当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the Effect of Confinement on the Structure and Properties of Small‐Molecular Organic Semiconductors
Advanced Electronic Materials ( IF 6.2 ) Pub Date : 2017-12-11 , DOI: 10.1002/aelm.201700308
Jaime Martín 1, 2 , Matthew Dyson 3 , Obadiah G. Reid 4, 5 , Ruipeng Li 6 , Aurora Nogales 7 , Detlef‐M. Smilgies 6 , Carlos Silva 8 , Garry Rumbles 4, 5, 9 , Aram Amassian 10 , Natalie Stingelin 1, 11
Affiliation  

Many typical organic optoelectronic devices, such as light‐emitting diodes, field‐effect transistors, and photovoltaic cells, use an ultrathin active layer where the organic semiconductor is confined within nanoscale dimensions. However, the question of how this spatial constraint impacts the active material is rarely addressed, although it may have a drastic influence on the phase behavior and microstructure of the active layer and hence the final performance. Here, the small‐molecule semiconductor p‐DTS(FBTTh2)2 is used as a model system to illustrate how sensitive this class of material can be to spatial confinement on device‐relevant length scales. It is also shown that this effect can be exploited; it is demonstrated, for instance, that spatial confinement is an efficient tool to direct the crystal orientation and overall texture of p‐DTS(FBTTh2)2 structures in a controlled manner, allowing for the manipulation of properties including photoluminescence and charge transport characteristics. This insight should be widely applicable as the temperature/confinement phase diagrams established via differential scanning calorimetry and grazing‐incidence X‐ray diffraction are used to identify specific processing routes that can be directly extrapolated to other functional organic materials, such as polymeric semiconductors, ferroelectrics or high‐refractive‐index polymers, to induce desired crystal textures or specific (potentially new) polymorphs.

中文翻译:

限制对小分子有机半导体结构和性能的影响

许多典型的有机光电器件,例如发光二极管,场效应晶体管和光伏电池,都使用超薄有源层,其中有机半导体被限制在纳米尺度内。然而,尽管这种空间约束可能对活性层的相行为和微观结构以及最终性能产生巨大影响,但很少解决该空间约束如何影响活性材料的问题。在这里,小分子半导体p- DTS(FBTTh 22用作模型系统,以说明此类材料对与设备相关的长度标尺的空间限制有多敏感。还表明可以利用这种效果。例如,证明了空间限制是指导p‐ DTS(FBTTh 22的晶体取向和整体织构的有效工具。以可控的方式结构,允许操纵包括光致发光和电荷传输特性在内的特性。这种见解应该广泛适用,因为通过差示扫描量热法和掠入射X射线衍射建立的温度/限制相图可用于识别可直接外推到其他功能性有机材料(如聚合物半导体,铁电体)的特定加工路线或高折射率聚合物,以诱导所需的晶体织构或特定的(可能是新的)多晶型物。
更新日期:2017-12-11
down
wechat
bug