当前位置: X-MOL 学术Catal. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synergy between active sites and electric conductivity of molybdenum sulfide for efficient electrochemical hydrogen production†
Catalysis Science & Technology ( IF 5 ) Pub Date : 2017-12-06 00:00:00 , DOI: 10.1039/c7cy02001e
Feng Zeng 1, 2, 3, 4, 5 , Cornelia Broicher 1, 2, 3, 4, 5 , Stefan Palkovits 3, 4, 5, 6 , Kalin Simeonov 1, 2, 3, 4, 5 , Regina Palkovits 1, 2, 3, 4, 5
Affiliation  

Molybdenum sulfide is a promising non-precious material for electrochemical hydrogen production from water. The number of active sites, the intrinsic activity and the electric conductivity of molybdenum sulfide have a significant influence on hydrogen evolution activity. Poor performance of any of these three factors may hamper the hydrogen evolution activity, so synergy between active sites and electric conductivity is of great importance. Here, we report a scalable wet chemistry method coupled with controllable calcination and the incorporation of carbon nanotubes. In this way, molybdenum sulfides showing optimum synergy between tailored and abundant active sites and high electric conductivity become accessible. Major factors governing the intrinsic catalytic activity could be identified. The optimized molybdenum sulfide based catalyst obtained by this method shows higher activity than sole molybdenum sulfide or molybdenum sulfide modified by either calcination or CNT addition. A low overpotential of 154 mV at a current density of 10 mA cm−2, a low Tafel slope of 31 mV per decade and very good stability were achieved. This versatile approach paves the way for the systematic optimization of various 2D materials utilizing the synergy between active site design and enhanced electric conductivity.

中文翻译:

硫化钼的活性位与电导率之间的协同作用,可有效产生电化学氢

硫化钼是一种有前景的非贵重材料,可用于从水中电化学制氢。硫化钼的活性位点数量,本征活性和电导率对析氢活​​性具有重要影响。这三个因素中任何一个的性能较差都可能会阻碍氢的析出活性,因此,活性位点和电导率之间的协同作用非常重要。在这里,我们报告了可控的湿化学方法,以及可控的煅烧和碳纳米管的掺入。以这种方式,可获得在定制的和丰富的活性位点之间具有最佳协同作用并具有高电导率的硫化钼。可以确定控制固有催化活性的主要因素。通过这种方法获得的优化的基于硫化钼的催化剂显示出比单独的硫化钼或通过煅烧或添加CNT改性的硫化钼更高的活性。在10 mA cm的电流密度下具有154 mV的低过电势-2,实现了每十倍频程31 mV的低Tafel斜率和非常好的稳定性。这种多用途的方法利用活性位点设计和增强的电导率之间的协同作用,为各种2D材料的系统优化铺平了道路。
更新日期:2017-12-06
down
wechat
bug