当前位置: X-MOL 学术J. Am. Coll. Cardiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optogenetic Neuromodulation of the Heart ∗
Journal of the American College of Cardiology ( IF 24.0 ) Pub Date : 2017-12-01 , DOI: 10.1016/j.jacc.2017.10.003
Lior Gepstein , Amit Gruber

SEE PAGE 2778 C onventional interventions targeting the heart are destructive and nonreversible (e.g., surgery or ablation), or they affect noncardiac tissue and the heart globally (e.g., pharmacotherapy) and therefore are associated with significant side effects. Imagine the possibility of having an alternative therapeutic intervention which could be highly targeted to a specific site and even to a specific cell type and could be turned on or off remotely like a light switch. Such a conceptual approach became a reality with the introduction of optogenetics. The term optogenetics was first coined by Deisseroth et al. (1) in 2006 and refers to the ability to control the activity of excitable tissues through the expression of light-sensitive microbial proteins (opsins) in the targeted cells. The expressed opsins function as ion channels, ion pumps, or signaling receptors, and their activation by light enables precise, localized, and lowenergy control of cells, tissues, and even wholeorganism activity (2,3). Consequently, optogenetics transformed the field of neuroscience, enabling targeted modulation of the activity of specific neuron populations by light and therefore tight spatiotemporal control of neuronal circuitry in the brain. In addition to allowing better understanding of brain function, optogenetic-based therapeutic applications are also emerging for various neurological disorders, albeit still at the preclinical stage, including the development of light-based treatments for epilepsy, depression, pain relief, and Parkinson’s disease (4,5).

中文翻译:

心脏的光遗传学神经调节*

参见 PAGE 2778 C 针对心脏的常规干预具有破坏性和不可逆性(例如,手术或消融),或者它们会全面影响非心脏组织和心脏(例如,药物治疗),因此会产生显着的副作用。想象一下,有一种替代治疗干预的可能性,它可以高度针对特定部位甚至特定细胞类型,并且可以像电灯开关一样远程打开或关闭。随着光遗传学的引入,这种概念方法成为现实。光遗传学一词最早由 Deisseroth 等人创造。(1) 2006年,是指通过在靶细胞中表达光敏微生物蛋白(视蛋白)来控制可兴奋组织活动的能力。表达的视蛋白用作离子通道、离子泵、或信号受体,它们被光激活可以对细胞、组织甚至整个生物体的活动进行精确、局部和低能量的控制 (2,3)。因此,光遗传学改变了神经科学领域,能够通过光有针对性地调节特定神经元群的活动,从而对大脑中的神经元回路进行严格的时空控制。除了可以更好地了解大脑功能之外,基于光遗传学的治疗应用也正在出现在各种神经系统疾病中,尽管仍处于临床前阶段,包括开发用于癫痫、抑郁症、疼痛缓解和帕金森病的基于光的治疗方法。 4,5)。甚至全组织活动 (2,3)。因此,光遗传学改变了神经科学领域,能够通过光有针对性地调节特定神经元群的活动,从而对大脑中的神经元回路进行严格的时空控制。除了可以更好地了解大脑功能之外,基于光遗传学的治疗应用也在各种神经系统疾病中出现,尽管仍处于临床前阶段,包括开发用于癫痫、抑郁、疼痛缓解和帕金森病的基于光的治疗方法。 4,5)。甚至全组织活动 (2,3)。因此,光遗传学改变了神经科学领域,能够通过光有针对性地调节特定神经元群的活动,从而对大脑中的神经元回路进行严格的时空控制。除了可以更好地了解大脑功能之外,基于光遗传学的治疗应用也在各种神经系统疾病中出现,尽管仍处于临床前阶段,包括开发用于癫痫、抑郁、疼痛缓解和帕金森病的基于光的治疗方法。 4,5)。
更新日期:2017-12-01
down
wechat
bug